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FOREWORD

This handbook has been produced by the Space Systems Division of

the Martin Company under contract NAS8-5031 with the George C. Marshall

Space Flight Center of the National Aeronautics and Space Administration.

The Lunar Flight Handbook is considered the second in a series of

vol_mes by various contractors, sponsored by MSFC, treating the dynamics

of space flight in a variety of aspects of interest to the mission

designer and evaluator. The primary purpose of these books is to serve

as a basic tool in preliminary mission planning. In condensed form they

provide background data and material collected through several years of

intensive studies in each space mission area, such as earth orbital

flight, lunar flight, and interplanetary flight.

Volume II, the present volume, is concerned with lunar missions.

The volume consists of three parts presented in three separate books.

The parts are:

Part 1 Background Material

Part 2 - Lunar Mission Phases

Part 3 Mission Planning

The Martin Company Program Manager for this project has been

Jorgen Jensen; George Townsend has been Technical Director. Fred

Martikan has had the direct responsibility for the coordination of

this volume; he has shared the responsibility for the generation of

material with Frank Santora.

Additional contributors were Robert Salinger, Donald Kraft, Thomas

Garceau, Andrew Jazwinski and Lloyd Emery. The graphical work has been

prepared by Dieter Kuhn and Elsie M. Smith. John Magnus has assisted in

preparing the handbook for publication. William Pragluski, Don Novak,

James Porter, Edward Markson, Sidney Roedel, Wade Foy and James Tyler

have made helpful suggestions during the writing of this book.

The assistance given by the Future Projects Office at MSFC and by

the MSFC contract management panel, directed by Conrad D. Swanson is

gratefully acknowledged.
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V. EARTH DEPARTURE

IN TR OD UC TION

Chapters II, III and IV presented material

introductory to the problem of lunar flight such

as analysis of the environment in which the space

vehicle moves (including some numerical values

of constants describing this environment), the

geometry and dynamics of motion in earth-moon

space and finaliy, a general classification of

missions and trajectories and trajectory simula-

tion in earth-moon space. The material in

Chapters II, III and IV has been qualitative, or--

if quantitative--designed to provide background

for a discussion of lunar trajectories. The

present chapter is the first of six which present

detailed trajectory data for the various phases

of a lunar mission, giving detailed analyses and

approaches to the problems, illustrating them

with numerical examples, or giving parametric

variations of trajectory variables whenever

necessary. Chapter V discusses earth departure--

that part of the total trajectory of any lunar mis-

sion between launch at a given time and site and

injection into the desired translunar trajectory at

the correct time and position. However, no dis

cussion will be given of ascent trajectories from
iaunch to booster burnout.

To accomplish its mission, a lunar spacecraft

must be placed at a precise position at a precise

time with a very accurate velocity. In order to

attain these injection conditions, the spacecraft
must first be launched from the earth's surface

with the proper ascent trajectory. It is thus of

utmost importance that this earth departure

phase be as flexible as possible to ease the com-

plexity of mission planning and to minimize the
introduction of additional launch constraints. This

consideration precludes discussion of direct as-

cent from launch to lunar trajectory injection

(i.e., direct earth departure) by continuous rocket

burning during this phase of the trajectory.

Generally the most practical, efficient, and

likely technique of earth departure utilizes park-

ing orbits about the earth prior to injection. Ad-
ditionally, these parking orbits allow greater

mission flexibility by providing:

(1) Time for finai onboard and ground

checkouts before injection is initiated.

(2) Injection capability any time of the

month, twice a day.

(3) The same nominal ascent and injection

trajectory profile for any mission.

The major disadvantages of this technique are the

increased requirements for tracking, communica-
tion and eomput:ational facilities. Even so, these

disadvantages will become less severe as more

ground support equipment becomes operational
and available fox' lunar mission support, flence,

parking orbits have been assnmed for the earth

departure iHu_se throughout this chapter.

Flexibility from a flight mechanics point of
view, as used here, is assessed ill terms of

launch frequency and launch tolerance. Launch

frequency is defined as the number of time

periods for a possible launch during the month

(lunar position in orbit) or during the day (earth

rotation), while launch tolerance is the interval

of time by which the launch can be expedited or

delayed from the nominal launch time, still

yielding the desired injection conditions.

There are two basic launch techniques that

can be used to obtain launch frequency and

launchtoleranee. In the first technique, the

earth parking orbit and translunar trajectory are

fixed for a given injection time. Direct or in-

direct ascents are performed to attain the re-

quired parking orbit. The direct ascent solves

the timing problem of arriving at the proper in-

jection point at the correct time on the ground
before launch. In the indirect ascent method,

the spacecraft is launched at any time, and the

timing problem is solved while in the parking
orbit. The former method results in launch
tolerances measured in terms of a few minutes

and a launch frequency varying from one to four

times a day. The indirect method is characterized

by launch tolerances measured in hours, a fre-

quency of one or two times a day, and a require-

ment of two additional rocket engine ignitions.
Furthermore, waiting times in parking orbit

prior to injection can easily be 24 hr for the in-

direct as compared to 2 hr for the direct ascent.

The second technique assumes a variation of

the translunar trajectory with delay time re-

sulting in a launch frequency of twice a day, with

a corresponding launch tolerance of approximately

5 hr. Since no excess propellant is required to

obtain this launch tolerance, there is no payload

penalty, tIowever, this is not the case for the

first technique, where launch tolerances are

governed by the amount of excess propellant

available. This latter technique appears to be
most favorable if an earth rendezvous is not re-

quired.

Additional propellant may also be required to

salvage a mission in the event the vehicle cannot

be injected at the preplanned time. Essentially,

this propellant provides an injection frequency and

injection time tolerance once the spacecraft is in

its parking orbit. Excess propellant is also de-
sirable for manned missions if an abort is required

during the injection phase, when the spacecraft is

being accelerated from earth-orbital to translunar

injection speed.

The numerical data presented in this chapter

represent launches from Cape Canaveral alone.

Magnitudes of launch tolerances are obtained by

assuming a hypothetical launch vehicle and are
included solely for the purpose of giving insight

into and comparison of the various aspects of the

problem.

All data presented in this chapter is based

on Neplerian orbits during ballistic flight, he.,

the earth is assumed spherically symmetric in

concentric layers, and atmospheric drag and

other non_ravitational forces on the vehicle are

neglected. (On occasion, effects of atmospheric

drug _uld earth oblateness on tim ascent trajectory
will be mentioned.) In most cases, rocket thrust

is simulated by an impulsive change in the veloc-

V - [



ity--A V; more details concerning the effects of

finite burning times and a discussion of general

orbital maneuvers are presented in Chapter VI of

Ref. 1.

A. FIXED TRANSLUNAR

TRAJECTORY TECHNIQUE

The timing and planning of a lunar mission

reduces to the selection of a moon arrival date

and time which depends on such mission con-

siderations as solar illumination of the moon,

the ability to establish prescribed orbits around

the moon with circumlunar trajectories, and the

ability to land at designated landing sites which

are librating relative to earth. This selection

of arrival time then fixes the translunar injection

position qJ0 ' the injection time and the inclina-

tion of the translunar plane iVT L (Chapter IV, Sec-

tion B). These fixed values, together with the in-

jection radius and velocity, are then specific re-

quirements for the lunar mission which must be

met if the mission objectives are to be attained

with the particular vehicle. This is illustrated by

considering a one-minute delay in the arrival at

the predetermined injection point. A late injection

of this magnitude into a ballistic translunar trajec-

tory can change the miss distance (pericynthion) at

the moon by -26 kin, the vacuum perigee altitude

(for a circumlunar trajectory) by + 305 km, and

the return inclination iVT E by 2 deg. Another,

and more severe example is an error in injection

position. If the spacecraft is injected at the cor-

rect time but with an along-track position error

of + 11 kin, the pericynthion of the ballistic cir-

cumlunar trajectory can change by + 135 kin, the

return vacuum perigee by - 14, 250 km and the

return trajectory inclination by 7.5 deg. There-

fore, regardless of how the spacecraft leaves

the earth's surface, it must satisfy the translunar

injection requirements quite closely. Under-

standably, midcourse guidance can correct

small errors at injection; but they must be small

if the correction fuel requirements are not to

become excessive and if the midcourse guidance

scheme is to be easily mechanized. Major

trajectory changes after injection require too

much energy to be practical at this time and they
should be avoided.

1. Launch Tolerance with Direct Ascent

a. Direct ascent without earth rendezvous

With the ballistic translunar trajectory fixed,

the injection conditions of the spacecraft (radius

and velocity vector) are also fixed. To achieve

these injection conditions, a coast period and

parking orbits are likely to be used during the
ascent phase.

The inclination of the parking orbit to the

equatorial plane is quite important. If this in-

clination is not the same as the inclination of the

translunar trajectory to the equatorial plane, a

lateral maneuver will be required at velocities

between earth orbital and escape speed. This

is expensive in fuel since a large velocity vector

must be changed in direction or "turned. " There-

fore, throughout the handbook, the parking orbit
prior to injection is assumed to tie in the same

plane as the initial translunar trajectory, and

any lateral maneuvers, if required, will be per-

formed during ascent into the parking orbit.

In order to satisfy the injection conditions,

one can first visualize a "phantom" satellite in

the parking orbit having the correct position for

achieving the injection conditions at some pre-
determined time.

The problem now reverts to one that requires
the spacecraft to ascend from the earth's surface

and rendezvous with the phantom satellite. For

mission planning, information is required as to

the fuel penalty if the launch of the spacecraft is

delayed on the ground.

In the direct ascent method, the spacecraft

is boosted directly to the altitude of the parking

orbit. The time of arrival at this altitude is

planned such that the spacecraft and phantom

satellite are coincident. The spacecraft is then

injected into orbit, and it executes any turns that

may be required to establish itself in the parking

orbit plane during the orbit injection. In other

words, a fictitious rendezvous is made with the

phantom satellite. The direct ascent method is

illustrated in the following sketch.

(_ Early Launch

(_) Nominal Launch

(_ Late Launch

,_,Powered

Trajectory Phase

...... Coast Trajectory

Phase

As can be seen, the spacecraft is accelerated

from launch to some cutoff altitude. It then

coasts to the parking orbit altitude, where ten
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dezvous is made with the phantom satellite. If

a turn (i°e., orbit inclination change) is required,

it is made during the second powered phase, as
shown.

First, consider Case B in the sketch, where

the launch site lies in the parking orbit plane and
the phantom satellite is in the correct position,
such that rendezvous occurs at the end of the as-

cent phase. For this case, no turn is required

at the rendezvous point, and Case B will be con-

sidered as the nominal ascent trajectory in this
discussion.

The next sketch shows three ascent trajec-
tories (1, 2, 3) and the times of arrival at

apogee {t 1, t N, t3). Trajectory number two is

the nominal ascent, and t N is the nominal apogee

arrival time, with tt_e nominal launch time being

t L •

Now consider that for Case B, the phantom

satellite was not at the correct position at

launch (tL), but instead was at (t L -/_tl) as
shown

/
If At 1 is equal to the difference between the

nominal apogee arrival time and t I (t N > tl) , the

spacecraft can still perform the rendezvous by

flying the number 1 trajectory. This is called

an early launch. The same reasoning applies
if the phantom satellite occupies the position

(t L + At 3} at launch (late launch). If At 3 is

equal to (t 3 - t N) the spacecraft can rendezvous

by flying the number 3 trajectory. In other words,

by extending the ascent range _ the spacecraft
a

can be launched at any time in the interval At L =

(t 3 - tl), where At L is the launch tolerance ob-

tained by extending _a from _al to _a3"

Another method of obtaining launch tolerance

consists of shaping the ascent trajectory. Con-
sider the nominal ascent which arrives at the

parking orbit altitude hp with zero flight path

angle ('y = 0). Now, for a given range angle _a'

aliow the spacecraft to intersect the parking
orbit with "y # 0, as shown in the following sketch:

/

• t (t L -t3)_- /

Phlntol

Sat*llite

(_t t),)

,t ch -%¢

/ t _/I / / "_ " _ParkinlI

_J ' ,O_ -- o,bit

(_llomlnll

Assume further that upon arrival at the parking

orbit altitude hp a rendezvous is performed,

and the flight path angle is reduced to zero.

Trajectory number 1 (early launch} arrives at

t 1, where t 1 > iN, and trajectory number 3

(late launch) arrives at t 3 < t N. By utilizing

the same approach presented for the range ex-

tension method, it is similarly found that the

launch tolerance from trajectory shaping is

At L = (t I - t3).

Thus far, the discussion has been restricted

to Case B where the launch site lies in the

parking orbit plane. However, this is not true

in general because as the phantom satellite

progresses in its orbit, the launch site, on the

rotating earth, rotates out of the parking orbit

plane. The real situation, greatly exaggerated,

is depicted in the sketch on page V-2 by the as-
cent trajectories A and C . Because of the

earth's rotation, Case A occurs prior to the

nominal launch time t L and Case C after t L,

and it is evident that some turn is required if

launch took place at those times. The following

sketch gives the pertinent geometry for deter-

mining the required turn angle A A which can be

obtained from spherical trigonometry:

AA)

dezvous

Ascent

Trajectory

28.

Ascent Turn AnEle doometry
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AA = sin I sin 28.5 ° cos iVE-i i sin _a

cos 28.5 ° sin iVE sin kNL

sin _,
a

(1)

]
where the launch site is assumed in the northern

hemisphere for this formula to hold, and

(+) = launch site on the polar side of

the orbital ground trace (not

shown)

(-) = launch site on the equatorial

side of the ground trace

+ 28.5 ° = latitude of Cape Canaveral, the
launch site

Equation (1) shows that the longitude of the

launch site XL, the ascent range @a' and the

parking orbit inclination to the earth's equator

iVE, determine the magnitude of the required

turn angleAA. Furthermore, the minimum

turn angle occurs when @a = 90 deg. Assuming

that the launch site is Cape Canaveral, which is

at a latitude of + 28.5 deg and iVE is limited to

between 28.5 and 35 deg, typical values of A A

are shown in Fig. 1 for the nominal case _a =

90 deg. Since the phantom satellite moves

along the parking orbit at approximately 4 deg/
rain, and the launch site rotates with the earth

at approximately 0.25 deg/min, the value of

A k will always be small for a given nominal
phantom satellite pass (see sketch on page V-2).

Consequently, because of the short interval of

time the phantom satellite is in a favorable

rendezvous position in a given revolution, the

required A A is small. This particular point

will become quite clear when the actual magni-
tudes of the launch tolerances are discussed

below.

IfAA and @a are known, the required position

of the phantom satellite /_ can be determined
req

by use of spherical trigonometry (see the above
sketch):

F V
BT = c°s-lL _ cos _a cos _ - sin @a sin ,_ cos AA

" COS Ei(_ -iVE)_ { I - sin @a sinAA

sin _ sin _(a- iVE (2)o

where

(+) = launch site on tile polar side of the

orbital ground trace

(-) = launch site on the equatorial side of the

orbital ground trace

Ftan 28.5o 1= tan-1 [_sink L

6 = sin -I _ sin28"5°]
_-sin

then greq gT - ascent time

fiT is the orbital central angle of the rendezvous

point (measured northward from the ascending
node of the parking orbit--see previous sketch).

But first, the required ascent range as a

function of launch delay time must be determined.

If a nominal launch (_a = 90 deg) is possible at

a given time (tL), there are only two parameters

which can be changed to effect a rendezvous at
a later instant. These variables are the actual

launch time t and the ascent range a_ . The mo-a

tion of the phantom satellite as a function of these

variables is given by:

dt+ (_t) d@ a. (3)dgreq= t_K -
" -a"

Likewise, the motion of the intersection point of

the parking orbit and ascent trajectory is given
by

agT_ aBT_

: dt + ( _-K_-a] d@ a(-'O-'iJ_ , : constant
d
gT

a t = const

(4)

In order to effect a rendezvous, the phantom
satellite and the intersection point must be co-

incident. Therefore, by equating Eqs (3) and

(4), the range extension as a function of launch
time can be found as

aft T -agT\st
d _a _a = constant

(5)
a gT" 8 t o gT -

t = const

A typical magnitude of d @a/d t for near-earth

parking orbits is 55 deg/mi'n. Thus if a nominal

launch calls for _a = 90 deg, a launch can be made

one minute before nominal by decreasing _a to

35 deg or one minute after nominal by increasing

_a to 145 deg° In other words, for this practical

range variation, launch tolerances obtained by

range extension for the direct ascent technique
are measured in minutes rather than hours.

Note that Eqs (3), (4) and (5) apply to the range

extension method only. Besides being used in-

dividually, the methods of range extension and

trajectory shaping also can be used together to
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obtaina launchtoleranceasshownin thenumeri-
cal exampleof SubsectionA-lc below.

b. Directascentwithearthrendezvous

It becomesimmediatelyevidentthatif ti_e
phantomsatellitewerereplacedbyanorbiting
vehicle,thelaunchtolerancesgivenbythe
previousdiscussionaredirectlyapplicable.
Therefore,if a missionentailsaphysicalren-
dezvouswithafuelingvehiclein earthorbit,
for example,themethodsfor launchingthe
spacecraftarenotaltered.

For thefixedtranslunartrajectorytechnique,
themethodsfor launchingandthelaunchtoter-
ancesfor thefuelingvehicleare identicalto
thoseofthespacecraft,sincefor anearthren-
dezvousmissionwitha subsequenttranslunar
injectionrequirement,thefuelingvehiclemust
first rendezvouswithaphantomsatelliteand
thenthespacecraftmustrendezvouswiththe
fuelingvehicle. Partof themissionplanning
mustincludethetimerequiredinparkingorbit
toperformtherendezvousmaneuver,matethe
vehiclesandmakefinalpreparationfor injection
intothetranslunartrajectory.

c. Numericalexamplefor directascent

Thevariousconceptsfor directascentsto
theparkingorbit andtheir relativemeritscan
bestbeillustratedbya numericalexample.
Figure2presentslaunchtolerancesobtained
byrangeextensionfor ahypotheticallaunch
vehiclewitha burnoutaltitudeof 185.2km. The
datashowsthatlaunchtoleranceincreaseswith
increasingparkingorbit altitude,andfor the
samerangeextension,it decreaseswithin-
creasinginitial ascentrange. Bothof these
effectsareevidentfrom Eq(5), thefirst being
dueto thedecreaseof 0fiT/0 t with increasing

altitude, and the second due to increasing

(0 t/ :) ¢)const launch time with increasing initial
range.

Another aspect of the direct launch involves

a set of orbit injection conditions (discussed in
Section C) as well as launch tolerances for each

orbital pass of the phantom satellite, since launch

and rendezvous can take place on orbital revolu-

tions prior to and after the nominal. This is also

illustrated in the sketch showing direct ascent,

whereby in Case A (early launch) the rendezvous

with the phantom satellite may occur one revolu-
tion before the nominal, and in Case C (late

launch) the rendezvous may occur one revolution
after the nominal. Since the parking orbit period

is approximately 90 min for the orbital altitudes
considered, the launch site will have approxi-

mately a 22.5-deg longitude difference from the

parking orbit plane for a pass before or after
the nominal revolution. It becomes quite dear,

for these cases, that much larger turns are re-

quired when the spacecraft intersects the parking

orbit (Fig. 1). The additionatAV of launching
one revolution before nominal (due to turn) is

approximately 1311 m/see for the parking orbit

inclination iVE = 35 deg. This /xV decreases

with decreasing iVE, but it still is 549 m/see

above nominal for iVE = 29 deg. For launches

after nominal, the additional fucl requirement

rises, but not nearly as sharply as for launches
before nominal. A launch one revolution after

nominal requit-es an additional/x V = 762 m/sec

for iVE = 35 deg and only 91.5 m/sec for iVE :

29 (leg. For some cases, three oF four launches

per day are possible.

The velocity capability required V for
t'eq

the nominal ascent (Cuse B) is given foF t_]e

hypothetical booster in Table 1.

TABLE l

Total Velocity Required for'

Nominal, No Turn, Rendezvous.
V (m/see)

req

hBo : 185.2 km

I Ascent Range Angle, _a (dcg)
Parking Orbit

\ltitude hp [___ _ _1 ....

(km) 1 60 __ 120 180
277.8 7848 3 17848 0 $84_ 4 17847 1

466.7 17964[7 1795810 795519 1795519

7408 L81369 18114.4 81071i81043

By extending the ascent range, the _otal
velocity requirements are affected, the total

velocity required being defined as

V = velocity at burnout _ AV (injection and
req turns)

Table 1 shows that the required velocity de-

creases slightly with increasing ascent range
Thus, for the nominal case. launch tolerance is

obtained with an attendant reductinn in V and
req

hence in fuel expenditure. Of course, V in-
req

creases with parking orbit altitude, as ('an be

seen from Table 1.

For the off-nominal case and the parking orbit

inclinations of interest, practical iul*n angles

from a standpoirtt of fuel requirements will vary
from 0 to 4 ° .

Figure 3 shows that for a constant turn an_le

at hp : 466.7 km the required velocity drops

with decreasing range angle (see solid curves).
However, the turn angle required will not remain

constant as _ changes and the "dashed" curves
a

in Fig. 3 show how the total velocity requirement

varies. For range extensions from it0 ° to 90 °, no

additional velocity is required: bul by exIending

the range beyond 90" and below It0" 1he velocity

required increases rapidly.

Launch tolerances as obtained from trajectory

shaping have not been considered thus far
Essentially, the tolerances derived from the

"shaping" method are limited only by 1he velocity

capability of the booster and are dependenl on tile
booster characteristics Figure t presenls lhe

velocity requirement above nominal f_r obtaining
launch tolerances by this method wilh the assumed

booster and for hp - 466.7 kin. For a fixed hp
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anda fixedlaunchtimetolerance,thevelocity
requirementincreaseswithdecreasingascent
rangeangle

It shouldbenotedthattheslopesof theAV

versus At L curves are quite steep and increase

(not shown}, with decreasing parking orbit altitude

In addition, more velocity is required to obtain

a (+ } launch tolerance (launch late} than a (-}

tolerance Practical tolerances (AV± 300 m/sec)

again are measured in minutes

A third method for generating tolerances is by

combining the first two methods. This is possi-

ble by shaping the ascent trajectory for an early

launch at the minimum ascent range angle and a

late launch at the maximum range angle. Con-

sider as an example a parking orbit (hp = 466.7

kin, iVE = 30.25 °} and a booster (Vreq = 8186 m/

sec, hBo = 185.2 kin). At this inclination

(ivE> 28.5 ° , the launch latitude} three launches

daily are possible--two for Case B, since the

parking orbit ground trace intersects the launch

parallel at two points, and one for Case C, sihce

the maximum turn angle required at _a --90° is ap-

proximately 2°, which is within the velocity capa-

bility of the booster, as illustrated in Fig. 3.

Case B and Case C are illustrated in the sketch

on page V-2.

Tables 2, 3 and 4 show the launch tolerances

for this velocity capability using range extension

only, trajectory shaping only, and a combination

of the two methods for parking orbit altitudes of

277.8 km, 466.7 kin, and 740.8 km. The nominal

ascent range angle is 60 ° and, for the range ex-

tension method only, was varied to 180 ° for launch

tolerance. For the maximum turn case, the max-

imum ascent range angle is reduced to 125" be-

cause of the increased cost for turning (see Fig.
3). The nominal ascent range for trajectory

shaping is 90 ° for the no-turn eases and approxi-

mately 65 ° for the turn cases.

Note that for the lower parking orbit altitudes

(hp < 703.8 km) and for the no-turn case (AA = 0),

it is best to use the combination method. Above

703.8 kin, the range extension method becomes
the most efficient. Also note that if it is not

practical to extend the ascent range from 60 ° to

180% for example, limit _a to 120 ° , then the
max

combination method is the most efficient. For
" =

the example, presented (Vre q 8186.6 m/sec and

ivm = 30.25}, a launch time tolerance of 3 rain is

availabIe for the no-turn case at the parking orbit

altitudes of interest. At hp = 888.9 km, the en-

tire velocity capability Vre q is required to estab-

lish a circular orbit, and therefore there is no ex-

cess velocity available for range extension or tra-

jectory shaping. Consequently, there is zero launch
tolerance at this altitude.

Tables 2, 3 and 4 also point out how the launch

tolerances are reduced considerably for the max-

imum turn case because part of the excess velocity
must be used to perform the turn.

One way of increasing the launch tolerances is

to increase the velocity capability. For instance,

by increasing the velocity capability of the previ-
ous example from 8186.6 to 8338.7 m/sec, the

launch tolerance can be increased by one minute

for a parking orbit altitude of 466.7 kin.

T'ABLE 2

Launch Tolerance (rain)

hBo = 185.2 kin, hp = 277.8 km, Vre ¢ = 8186.6 m/sec

No Turn (Case B) Maximum Turn (Case C)

Total Total

Method -Tolerance +Tolerance Tolerance -Tolerance +Tolerance Tolerance

0.54

0.85

1.24

0.54

2.61

3.00

0

0.68

0.67

0.28

0.42

0.56

Range extension

Trajectory shaping

Combination

0

1.76

1.76

0.28

i. I0

1.23
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TABLE 3

Launch Tolerance (min)

hBo = 185.2 kin, hp = 466.7 km, Vreq= 8186.6 m/sec

No Turn (Case B) Maximum Turn (Case C)

Total Total

Method -Tolerance +Tolerance Tolerance -Tolerance +Tolerance Tolerance

Range extension

Trajectory shaping

Combination

0

1.48

1.45

1.88

0.82

1.85

1.68

2.30

3.30

0

0.70

0.70

O. 86

O. 46

0.85

0.86

1.16

1.55

TABLE 4

Launch Tolerance (min)

hBo = 185.2 kin, hp = 740.8 km, Vre q = 8186.6 m/sec

No Turn (Case B) Maximum Turn (Case C)

Total Total

Method -Tolerance +Tolerance Tolerance -Tolerance +Tolerance Tolerance

Range extension 0 3.28 3.28 0 0 0

Trajectory shaping 0.81 0.66 1.47 0 0 0

Combination 0.62 2.37 2.99 0 0 0

2. Launch Tolerance with Indirect Ascent

a. Indirect ascent without earth rendezvous

The indirect ascent method can be regarded

as a generalization of the direct ascent method.
The former method is illustrated in the follow-

ing sketch.

In an indirect ascent, the spacecraft is launched

at an arbitrary time into an ascent trajectory which

intersects the parking orbit plane 90 ° downrange

from burnout. This ascent range angle minimizes

the turn angle as given by Eq (i). At the intersec-

tion of the ascent plane with the parking orbit

plane, the spacecraft has reached the apogee of

its ascent coast trajectory and is turned into and

accelerated to the velocity of the predetermined

intermediate or waiting orbit. The circular wait-

ing orbit may be below or above the parking orbit,

its most important characteristic being that it has

a period different from the parking orbital period.

This allows the spacecraft to wait in the inter-

mediate orbit until the desired phase relationship

with the phantom satellite is established. At this

time the spacecraft transfers to the parking orbit

by a ttohmann transfer and effects a rendezvous

with the phantom satellite.
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The indirect ascent method has the following

characteristics: (1) Since the phantom satellite's
position is ignored at launch, the launch tolerance

is significantly larger than in the ease of the di-

rect ascent method. (2) Since there is generally
a waiting period in the intermediate orbit and the

transfer range angle is 180 ° , the time from launch

to rendezvous can be many hours as compared to
less than an hour for the direct ascent method.

(3) Two additional powered phases are required.

(4) The actual position of the rendezvous point

cannot generally be controlled without excessive

fuel penalties or longer wait times in the inter-
mediate orbit. (5) The launch vehicle or booster

must possess sufficient capability to deliver the

spacecraft to higher altitudes than the nominal

parking orbit because otherwise this method may

become impractical due to the very long waiting
times in the intermediate orbit.

In the numerical example which will be given
later, it is assumed that the booster can deliver

the spacecraft to any waiting orbit altitude between
185.2 and 740.8 kin. The lower altitude limit is

the result of unacceptably high drag decay rates
for space vehicles with "normal" area-to-mass

ratios, while the upper limit is the result of in-

creasing radiation from the inner Van Allen belt,

which may require heavier shielding of the space-

craft, and to a lesser degree it is the result of
increased energy requirements for the mission if

the parking orbit is at a lower altitude.

In this range of waiting orbital altitudes, the

time required to change the phase relationship be-

tween the spacecraft and the phantom satellite

can be determined as soon as the parking orbit
altitude is fixed. The following sketch shows the

phantom satellite near the middle of the altitude

band at 466.7 kin. Assume that at a time t O , the

spacecraft and phantom satellite are in phas%
Aft'= O, as shown. After one complete revolution

of the phantom satellite t 1 the relative position

of the spacecraft to the phantom satellite has

changed (z, (J, _ 0). In other words, the space-
craft has "gained" on the satellite for altitudes

less than 466.7 km and has "lost" for altitudes

greater than 466.7 km. The gain in central angle

per revolution (i.e., angular displacement of

spacecraft ahead of phantom satellite) is given by:

Aft, = t 1 (cot - COp) (6)

where _i is the angular velocity of the satellite

in the waiting or intermediate orbit

or in terms of time the gain per revolution is

I

z,t = A;_/_ i (7)

The maximum gain per revolution obtained from

above is 5.7 min for a waiting orbit at 185.2 km,
and the maximum loss is 5.7 rain for one at

740.8 km if the parking orbit altitude is 466.7 km.

Utilizing the same nomenclature but referring to

t 1 as the position of the spacecraft at any time,

and A/3're q as the required phase relationship to
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effect a Hohmann transfer to the parking orbit for

rendezvous, the angle _ to be gained or lost is:

' -A_'= A_req , gain for J 1 (8)
loss for co

3

' - A_' , loss for co
= 360 - A_req 1

(9)

gain for co3

with the number of spacecraft revolutions n re-

quired to achieve tile proper phase relationship

for rendezvous given by

n : _71Aj' (10)

where /',[3' is obtained from Eq (6) and n is not

necessarily an integer.

Now assume that the nominal ascent trajectory

corresponds to Case B (in the parking orbit plane,

direct with Ca = 90°)" After a few minutes of pos-

sible direct launches (direct launch tolerance) the

phantom satellite is no longer in the proper phase
relationship for rendezvous. The spacecraft must
now ascend to a different altitude to correct for

this phase differential, but in doing so, generates
another differential because of the difference in

ascent time from the nominal. Furthermore, the

interception of tile parking orbit plane occurs at a
different location from the nominal, thereby in-

troducing an additionalphase differential. Finally,
the transfer from the intermediate orbit requires

a phase differential. Therefore, the total phase

angle ig to be made up in the intermediate orbit
can be obtained from:

p = At L _p +(t a _ taN) 0_p+ (aT - t3TN )

+(180 - ttr _p) (11)

whe re

At L

t
a

taN

_T

= launch tolerance

= ascent time

= nominal ascent time

= central angle from parking orbit

node to interception of the parking

orbit plane with the ascent trajee-

to ry

_TN

ttr

= same as ;3T except the ascent tra-

jectory is nominal

= transfer time from the intermediate

orbit to the parking orbit.

Any booster burnout dispersions can be included

in the second term on the right-/land side, waiting

orbit dispersions into the third term; however

transfer orbit and parking orbit injection disper-

sions will alter ;1.

Thus with knowledge of A _' for the intermedi-

ate orbit and of ;3 for a particular launch tolerance,

the number of revolutions required in the inter-
mediate orbit can be found from Eq (10). But in

order to obtain t a, _3T and ttr for Eq (11). the in-

termediate orbit altitude relative to the parking

orbit must be known. This altitude can be estab-

lished through use of the previous sketch and Fig.
5. The constraints for ascent to a higi_er or lower

intermediate orbit altitude are as follows--either

set may be used; both reflect the l_hasc conditions

at injection into the intermediate orbit.

Set (l)

' - _req&_3req 180 ° < /x[3'< ,\ ' (h)w(r all)

_3req_' - 180 ° > _, > _A_rcq' (hi¢;}_c," Hll) (12)
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Set(2)
I

A{3're q + 180 ° > /x_, > A_req (higher alt)

!

APreq + 180 ° <- ±_' < A_3're q (lower alt) (13)

For a parking orbit altitude hp = 740.8 km,

the waiting or intermediate orbit lies below it and
there is no choice but to have an intermediate or-

bit lower than the parking orbit. In this case it
is possible to have aphase difference _ of 360 ° ,

which means that a maximum waiting time of 12.8

hr is possible at an altitude h i = 185.2 km of the

intermediate orbit. If the intermediate altitude is

higher, for example, h = 466.7 km, the waiting
1

time is doubled. The same waiting time applies

if hp = 185.2 km and the intermediate orbit is

necessarily higher. Consider the case hp = 466.7

kin, h i = 185.2 km where the maximum phase dif-

ferential is 360% the maximum waiting time is

25.6 hr. Of course, the maximum waiting time

increases for 185.2 km < h i < 466.7 km. If

185.2 km < b i < 740.8 kin, both constraints given

by Eq (12) or Eq (13) can be utilized and the max-

imum waiting time is again reduced to 12.8 hr.

In the determination of parking and waiting or-

bit parameters, some neglected forces should be
considered. Thus, at the lower orbital altitudes,

i.e., near 200 kin, atmospheric drag has a con-

siderable effect on the trajectory of the space-

craft. The lifetime for a dense spacecraft, or

low area-to-mass ratio, is of the order of days,

while for a spacecraft with a high area-to-mass

ratio it may be as low as a few hours. (For more

details on iifetime, see Chapter V of Ref. 1.)

Considering also orbit injection errors, apractieal

lower altitude limit for intermediate or parking
orbits is 250 km.

Other corrections to Keplertan orbits are due
to earth oblateness. For a circular orbit, the

major secular effects are a correction to the or-

bital period and a correction to the location of the

ascending node (regression of the nodes). During

the earth departure phase, the motion of the phan-

tom satellite in the parking orbit must be simu-

lated from the translunar trajectory injection point

back in time to the hunch time t L. In other words,

the phantom satellite position in orbit should re-

flect oblateness effects of the earth.

If the intermediate orbit altitude is different

from that of the parking orbit, there will be a dif-
ference in regression rates between the two.

Therefore, at the time of injection into the inter-

mediate orbit, the plane of the intermediate orbit

is established with the same inclination iVE as

the parking orbit, but with an orbital plane that

has a slightly different ascending node, or an off-
set. This offset gradually decreases due to nodal

regression until, at the time of rendezvous, both

the intermediate and parking orbit planes are
coincident.

Oblateness effects can also be counteracted by

applying small thrust impulses at the intersection

of the intermediate and parking orbit pIanes or by

one pulse at rendezvous, or one at the intersection

just prior to the rendezvous transfer maneuver.

The additional AV requirement to counteract earth

oblateness effects can be as high as 67 m/see for

a parking orbit altitude of 466.7 km and for a max-
imum of 24 hr in orbit.

b. Indirect ascent with earth rendezvous

Just as in Subsection A-lb, if the phantom

satellite is replaced by a physical vehicle, the

discussion given in the previous subsection, A-2-a,
is directly applicable for indirect ascents of lunar

spacecraft employing an earth rendezvous. The

same launch tolerances and velocity requirements

apply to the launch of the physical vehicle.

c. Numerical example for indirect ascent

• Again, the various concepts for an indirect

ascent will be illustrated by a numerical example.
In order to allow a comparison with the direct

ascent method, the parking orbit and hypothetical

booster characteristics are assumed to be the same.

It has been established that the inclination of

the parking orbit, the launch site latitude, and the

launch delay time all have a bearing on the magni-
tude of the turn angle AA. It is assumed that the

launch site is Cape Canaveral at a latitude of

28.5 ° N and that orbit inclinations, iVE, are

limited from 28.5 to 34.5 ° . Figure 5 presents

the required AA for _a = 90° from Cape Canaveral

to various values of iVE within the allowable band.

The data are presented versus a time scale in

increments of 1-hr launch delay time, The origin

in time, t = 0, is arbitrarily chosen in Fig. 5; it
by no means represents the nominal launch time

for the nominal, no-turn, direct ascent. This

choice of time origin also applies to Figs. 6

through 12.

Again a hypothetical launch vehicle is assumed

whose burnout altitude is 185.2 kin. Typical ve-

locity requirements for this booster are given in

Table 5 below for parking orbit altitudes hp of
185.2, 466.7 and 740.8 km.

TABLE 5

Velocity Required for Indirect Ascents
for Translunar Missions

(m/see)

Parking Orbit

Altitude hp

Intermediate Or-

bit Altitude h i

V (burnout)

AV (injection)

AV (transfer)

I;V (required to

rendezvous)

AV (escape)

ZV (required for

mission)

185.2 km ] 466.7 km

740.8 km 1185.2 km 740.8 km
______+__ .........

7816.9 ] 7793.1 7816.9

297. 8 l 0 297. 8

311.2 I 162.8 164.6

84_8_I _%a.9 82793

3_.0 I 3,5_._ 31_.3

740.8 km

185.2 k m

7793.1

0

311.2

8104.3

3098.0

11202.3
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However,theremainderofthediscussion
will assumethat hp = 466.7 kin, which is very'

close to a "rendezvous compatible orbit" of

485.2 kin. A rendezvous compatible, or syn-

chronous satellite orbit has an integral number

of revolutions per sidereal day, and hence passes

over the same areas each clay. For circular or-

bits, the altitude alone determines rendezvous

compatibility, but with earth oblatness effects
taken into account, the altitude-inclination com-

bination determines compatibility of orbits for
rendezvous.

Figures 6 through 9 show the excess velocity re-

quirements _V , i.e., the velocity required over
a nominal, no-turn, direct ascent, for h. = 185.2,1

370.4, 555.6, 740.8 kin, respectively. This ve-

locity excess includes the excess increments for

the launch, injection and turn, transfer and ren-

dezvous phases. Note that in Figs. 6 through ,9 the

minimum excess velocity increases for h i > hp,

since the spacecraft must lose altitude and hence

potential energy to return to the parking orbit for
rendezvous. The minimum excess is AV = 99. 1

m/see for h. = 555.6 km and AV = 304.8 m/see
1

for h. = 740.8 kin.
1

The sketches below serve as an aid for in-

terpreting Figs. 6 through 9.

T_xceel

/

Northealterly Somtbessterly /'

/

......,......
Z_V L T L T Occ_rm From Left

•_x," \//. C_o T,,.R.q_

t (hr)

/ Polar Side

LOcation

y "_ t_ " {"/Launc k Site

Parkin_orbit / _--..._ral_! Of

//

y_-_ Earth

At t = 0, the launch site is hallway between the
intersections of the parking orbit plane with the

launch Iatitude on the equatorial side. Prior to

this time, ascents are made northeasterly, A <

90 ° and southeasterly A > 90 ° , afterward. Tbe

inertial launch azimuth A (great circle course

on a nonrotating earth) is measured clockwise

from geographic north through 360 ° . If the

launch vehicle has an excess _,V 1 available, it

will have a continuous launch period (see sketch

on page V-2). However, if only an excess &V 2 is

available, the possible launch period LT will be
discontinuous as shown in the first sketch.

Referring again to Figs. 5 to 9, it is possible
to have a continuous launch tolerance for all park-

ing orbit inclinations and the maximum AV excess

required is on the order of 900 m/see. The re-

sulting iaunch tolerance can vary from 6 to 8 br,

depending on iVE. For excess 5V's less than

about 900 m/see, discontinuous and shorter launch

tolerances will be experienced for the higher

values of iVE. However, continuous launch toler-

ances may still be realized for lower values of

tVE-

If the phantom satellite has the proper phase
relation at the time the launch site is in the park-

ing orbit plane, the nominal, no-turn, direct as-
cent to rendezvous is conducted. In this case no

waiting time is required. If the launch vehicle
and spacecraft are ready prior to the nominal time,

and an ascent is performed, the proper phase re-

lationship will not exist and the spacecraft must

wait in an intermediate orbit. The spacecraft

also must wait if a late launch is performed.

The waiting time in the intermediate orbit de-

pends on the launch time. Figures 10 through 12

give the waiting time, in hours, for h. = 185.2,
" 1

370.4, 555.6 and 740.8 kin. Each figure represents

a different iVE in the possible band that can be

established from Cape Canaveral launches. Data

is shown emanating from a northeasterly nominal
launch direction. Below is another auxiliary

sketch illustrating the interpretation and use of

the figures.

,,4

"l

Launch &zi_uth

Northeasterly

_Launch _arly Launch

_-_t_

(Nominal launch

lorth_terly) -- ;L

Late --e _Early --

x\\

[+1 .

Launch Ti_e (hr)

Launch A$1m_th

8outhea_terly

--Late_

/
/

//

(Nominal launch

aoutheasterly)

The sketch shows the regions of northeasterly

and southeasterly launch azimuths. Since in gen-

eral iVE >28.5 ° , the launch latitude, the launch

V-I 1



site will be in the parking orbit plane twice a day

(points A and B in the previous sketches). If the

launch took place at the nominal north-of-east

launch time there would be zero waiting time.

However, if the spacecraft is launched early, say

at tL - zxt, then, depending on hi, the waiting time

will vary accordingly as illustrated in tile above

sketch. Note the cyclic nature of the curves that

originate at the "arrowheads." This is due to the

phantom satellite achieving the proper phase re-

lationship on succeeding revolutions. The interval

of time between "phasings" is attained after one

revolution plus an increment to account for the

launch site rotation, i.e., the interval is slightly

greater than the orbital period of the parking or-
bit. These "phasings" are denoted by arrows on

the abscissas in Figs. 10 to 12 and the construc-

tion of the curves is accomplished by utilizing the

same slopes for the straight lines as for the nom-

inal launch. The phasing points do not necessarily

occur on the southeasterly planar launch. How-

ever, if the nominal ascent is planned to occur at

the southeast orbital plane intersection (point B

and dashed curves in sketches), the phasing points
are constructed in the same manner and with the

same time intervals as they were for the north-

easterly nominal launch. It becomes evident from
the above discussion that the nominal ascent is

not necessarily planned for either orbital plane

intersection (points A and B). In fact, direct as-

cent (nominal launch) frequency may be higher for

a given excess velocity if the phasing points are

offset from the planar crossings.

Figures 10 to 12 essentially present minimum

waiting times and the col-responding intermediate
orbital altitudes as reflected by the constraints,

Eqs 12 and 13.

B. VARIABLE TRANSLUNAR TRAJECTORY

TECIINIQUE

This technique is based on the fact that for any

given translunar trajectory inclination iVT L a

specific trajectory can be found to satisfy con-

straints in flight time, pe icynthion altitude, and

transearth inclination iVT E. For the class of

circumlunar trajectories discussed in Chapter IV,

this suggests that translunar trajectories with

variable iVT L be used to obtain a launch time

tolerance (see Ref. 2, and also Chapter VI). This

is opposed to the technique discussed in Section

A, which assumes that the translunar trajectory

inclination, iVT L, is fixed by the mission during

the launch tolerance.

1. Launch Tolerance

a. Without earth rendezvous

Three assumptions will be made to simplify

this discussion. (1) It can be shown for lunar tra-

jectories that when the spacecraft is at pericynthion_

tp, the lunar position is nearly along the inter-

section x E of the MOP and the translunar tra~

jectory plane established at injection, t O (see

sketch below}. This will be assumed exactly true

-Translunar

Trajector_ -.
Pla_@

/.-

/ __ _ 0 Injection (t o )

(to) ,

'.../ LMoon (tp) , , /

:g

throughout this section. (2) Parking orbits around
the earth are permissible; in fact, they are de-

sirable because they allow the use of one efficient
nominal ascent and orbit injection trajectory pro-

file, provide final on-board and ground checkouts,
and open the launch window considerably. (3) The

moon's position_ at pericynthion (tp) is assumed

fixed on x E throughout the period of the launch

time tolerance, and consequently the orientation

of the earth's _quator[al plane and MOP are as-

sumed similarly fixed. The relatively slow mo-
tion of the moon around earth (about 1 ° of @* in 2

hr) makes this assumption valid over a period of

a few hours.

The next sketch illustrates how a launch time

tolerance is obtained by varying iVT L. Theo-

retically, there is an infinite launch tolerance

for this technique if there are no launch azimuth

restrictions and if the launch vehicle possesses

the additional energy requirements for retro-

grade launches (against the earth's rotation).

Practically, however, this is not the case, since

Cape Canaveral, for instance, has range safety
constraints that restrict launch azimuths to

45 ° < A £ Ii0 °. In the illustrative example the
launch azimuth is restricted to 70 ° _< A i II0 °.

The following sketch_shows the moon (x E) near

its ascending node B at the time of pericynthion.
The launch site is at 28.5 ° north latitude and is

rotating with the earth, as indicated by the se-

quence of points, A, B, C on the sketch. At point

A the launch site longitude is less than 180 ° west

of the moon's longitude and A = 70 ° . This heading

allows a parking orbit plane to be established

(denoted by (_) on the sketch) that passes through

x E and remains within the launch azimuth restric-

tion. The resulting inclinations to lhe equator and
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When the launch silo is cast, but less than

180 ° cast of the lunar lon_ifudc, another possible

launch period exists. Itowcvcr, in this period

translunar trajectorics tidal dcparl from the earth

}4 southerly relative to the M()I' arc required as

illustrated by the sketch bchlw:
st _(

_- Launc h i •

\Parallel Of T

0P

," / /2",// _//
/ / / /

I I

MOP are iVE A and iVTLA, respectively. The

spacecraft remains in the parking orbit until it

reaches the proper injection point #0(_) and

then is injected into a northerly direction relative
to the MOP. North, relative to the MOP, is de-

fined by the angular momentum vector of the lunar
orbital motion.

If the spacecraft is launched due east (A = 90 ° ),

there is a launch point B that also allows the park-

ing orbit{denoted by (_) on the sketch) to pass

through x E. Again the spacecraft remains in the

parking orbit until position ¢()(,_ at which time a

e.'Ynortherly injection takes plac This launch re-

suits in the minimum iVE and iVTL, as is evident

from the sketch.

As the launch site rotates with the earth, point

C is reached, requiring the maximum allowable

launch azimuth (A = 110 ° ) in order to pass through

_'E" Here, the parking orbit plane is the same

as established when the launch was made at point

A. Consequently iVE and iVT L are the same as

for launch location A.

A launch is possible at any time that the launch

site is between A and C. The translunar trajec-

tories for this example are necessarily northerly

and direct relative to the MOP, since a central

angle (g> 150 ° is required (see previous sketch)to

intercept the moon if injection occurs close to

perigee of the translunar trajectory.

As before, in the time the launch site rotates

from point A to B to C, the launch azimuttls are

70 ° , 90 ° and 110 ° respectively, and will, in the

azimuth restriction. The spacecraft waits in

parking orbit (_) or @ until the proper injection

point @0 is reached. At this time the spacecraft

is injected in a southerly direction relative to the

MOP. The shorter time requir'ed in the, park-

ing orbit for this case as compared to the inject
north case can be noted I)y comparin_ the two

sketches on this page. When the moon is near

its descending node the opposite is true.

The two sketches above iml)ly 1hal etA/dr,

the change in launch azimuth wilt_ launch time,
is constant. This is trim when the moon is at

its descending or ascending node, t>lat not when

the moon is at some other orbital position, as

shown below.
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Herethemoonis at its maximumnortherly
declination,andagainthelongitudesbetweenA
andB representnortheasterlylaunchesandthe
longitudesfrom B to C represent southeasterly

launches. Note that the perpendicular distances

d between A and x Eand C and x E are different.

"Fhis causes a rapid variation in dA/dt when

the site nears C, as can he visualized when the

moon is considered as a pivot point. This is il-

lustrated in Fig. 13, where the northeasterly

and southeasterly launch tolerances are plotted

separately for different lunar positions. In-

depen-tently, the launch tolerance varies from

10 rain to 4.74 hr. For the full range of launch
azimuths the total available launch tolerance is

4.91 hr.

As pointed out previously, there are two launch

periods available in one day. One period results

in translunar trajectories that are northerly rela-

tive to the MOP, and the other period results in

southerly translunar trajectories. Figure 13, al-

though shown for northerly departures, also is
applicable for southerly departures if the curve

of northeasterly launches in Fig. 13 is used to

represent southeasterly launches and vice versa.

Below is a table presenting typical delay times

between injection during period I and injection

during period II:

TABLE 6

Lunar Max Max Desc/Asc
Position North South Node

Injection

{Period I) Northerly Northerly Northerly

Launch time

tolerance 4.91 hr 4.91 hr 4.91 hr

Delay time 38 sec 38 see 7.19 hr

Injection

{Period II) Southerly Southerly Southerly

Launch time

tolerance 4.91 hr 4.91 hr 4.91 hr

These data show a very short delay time be-

tween available launch periods for the moon at its
maximum northerly or southerly declinations.

For all practical purposes, a launch period of

9.82 hr is available at these times if both inject

north and south trajectories are permitted.

The data presented in Fig. 13 and the above

table are calculated for the year 1968, when the

inclination of the MOP to the equatorial plane

iem = 28.5 °. Approximately nine years later,

=
iem 18.5 °. The effect of this change on launch

tolerance presented in Fig. 13 is to increase the
minimum tolerance and decrease the maximum

tolerance of the individual northeasterly or south-

easterly launches. The total launch time toler-
ance will not be affected.

It is important to note that the technique out-

lined above does not require any turning of the

velocity vector in flight at any time, although
such maneuvers couId be used to further increase

the launch time tolerance. The only AV penalty

of the launch vehicle is approximately 25 m/see

due to the varying component of the earth's ro-

tational velocity in the flight direction for the range
70 ° < A < 110 °.

b. Launch tolerance with earth rendezvous

If a fueling vehicle is injected first into a

parking orbit utilizing the variable trajectory

technique, its launch tolerance can be obtained

from the previous subsection. However, the

spacecraft must now be launched to perform a

rendezvous with the fueling vehicle. Since the

parking orbit inclination of the fueling vehicle is
fixed, the launch tolerance for the spacecraft is
the same as for direct or indirect ascent of the

fixed translunar trajectory technique.

The techniques for earth departure discussed
in Sections A and B illustrate how the launch tol-

erance can be increased from minutes to many

hours by the use of parking or parking and inter-
mediate {waiting) orbits with only moderate fuel

expenditure (AV's of the order of 300 m/see).
The increased launch tolerance is obtained at the

expense of some increase in complexity and the

number of rocket burning phases from launch to
lunar injection. On the other hand, each burning

phase can be used to correct for dispersions from

previous phases, dispersions due to variable densi-
ties, earth oblateness, etc., and the additional time

near earth can be used for tracking, checkout of

equipment, and refueling by shuttle vehicles. Thus

the small allowable delay time at the launch site

for the one burning phase of a direct departure

from earth has been traded for a large delay time
at the launch site and small tolerances for each

of several burning phases for an indirect departure

from earth (i. e., one using parking or waiting

orbits) which are simpler to achieve and give more

control and reaction time during the earth depar-

ture phase of a lunar mission.

C. TRANSLUNAR INJECTION

Sections A and B have discussed launch tech-

niques that result in the spacecraft arriving at
the correct position at the correct time for in-

jection into the translunar trajectory. Prior to
injection, the spacecraft is in a parking orbit.

But the question arises as to what can be done

to salvage the mission if the spacecraft cannot

be injected from this orbit at the proper time.

This may be the result of a system malfunction

that requires repair, a hold for injection because
of tile need of further verification of system

status, or an off-design parking orbit.

Furthermore, some missions require long

waiting periods in a parking orbit prior to in-

jection. Such a mission may be a tunar logistics

mission wherein the freighter waits in a parking

orbit while supplies are shuttled to it from the

earth's surface. The following discussion is ap-

plicable to both the cases of a missed injection

point and the logistics mission.
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I. Injection Tolerance

A nominally ballistic translunar trajectory

used for fulfilling a preplanned lunar mission is

determined by the injection conditions: at a given

time during the lunar month and during the launch
tolerance at a given day there will be a resultant

translunar trajectory plane inclined at an angle

iVT L to the MOP (see sketch below).

of the parking orbit, iVE, is also constant, but

its nodal regression rate cannot be i_nored. The

following sketch shows the physical situation anH

the nomenclature on the celestial sphere.

After the injection point has been missed, the
moon continues in its orbit as indicated. The

parking orbit regresses in a westeriy direction

for direct parking orbits and easterly for retro-

grade orbits; however, tl_e launch restrictions

Trajectory

x E

For this iVT L, there corresponds a particular

injection velocity vector V 0 , injection position

_0 ' and moon lead angte _",_ , to satisfy certain

mission constraints such as miss distance at the

moon, flight time to the moon, resultant orbital
orientation about the moon, etc.

If the injection is not performed at time t o ,

then the spacecraft will continue in its parking
orbit until the next opportune time for injection

arises. This time may occur after approxi-

mately one or several revolutions in the parking

orbit provided the vehicle has a certain maneuver-

ing capability. If the delay is such that the ma-

neuvering capability becomes insufficient to cope
with the off-design conditions, then a return to

earth must be made, or the spacecraft continues

in its parking orbit until its maneuvering capabil-

ity allows an injection into the desired translunar

trajectory. These cases will be discussed below.

Consider a delayed injection, where the

spacecraft continues its flight in the parking
orbit. Assume that the inclination of the MOP

relative to the equatorial plane iem remains con-

stant and that its nodal regression rate due to

earth oblateness is negligible. The inclination

Moon at

\--/ \, _ /Pericynthion

(_4oor,a __Injection)

at Cape Canaveral permit only easterly launches.

The angle I_TL is measured from the ascending

node of the MOP to the intersection of the parkin_

translunar plane with the MOP {-XE axis)orbit or

and is a function of iVE and iem. As cap be seen

the angle 13TL also varies wiih time as plotted under

the title "l_arking Orbit Regression "l'im(_ Traces"

in Figs. 14 to 16. The first two figures l_rcsenl
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data for iem = 26.5 ° and iem = 28.5 °, respectively.

This represents the period from early 1966 when

iem = 26.5 ° through late 1968 when iem = 28.5 °

to early 1972 when iem is once again 26.5 °. The

parking orbit altitude assumed in these figures

is that of a rendezvous compatible orbit (approxi-

mately 480 km) as explained previously in Sub _

sectionA-2b. The actual altitud_varies slightly

with iVE and the figures reflect data for 28.57 °

<__iVE <__33.7 °. Figure 16 shows the variation of

I_TLfor hp= 185.2 km and ier n = 26.5 ° for com-

parison purposes.

Once the injection is missed, it will take ap-

proximately one revolution in the parking orbit
(approximately i. 5 hr for a near-earth satellite)

before another attempt is made. During this

time the lunar position changes by A_,'s in its

orbit (see sketch below), and the parking orbit

shifts an amount AfiTL to _'E"

The inclination iVT L also changes slightly

(Fig. 17), and now the resulting lead angle after

one revolution is equal to ( _-",: - /x _,',_ - AfiTL)-

However, if the change in iVT L is small the re-

quired lead angle remains essentially constant

(see Chapter VI); therefore, if x E is shifted by

an amount /x _ to x" E prior to one revolution,

another injection becomes possible.

where A_ --__ _,:-"+ A_T L

This technique can be extended for more than one

revolution in the parking orbit and is only limited

by the maneuvering capability A V to perform
the shift.

This shift, or parking orbit adjustment, can

be accomplished by two methods. First, the

orbital maneuver or adjustment takes place at
= ± 90 ° so that the /_ V requirements are mini-

mized. Second, the adjustment takes place at a

point in the parking orbit that allows the nominal

or design iVT L and _* to be kept constant.

Only the former adjustment technique is dis-

cussed; the steps necessary to determine the
amount of correction AV are listed below.

(1)

(2)

Determine the iVTL, _* required curve

that satisfies the lunar mission from

Chapters VI and XI.

Starting from the design or nominal

injection time t O , determinefiTL as

a function of time.

(3) From (2), also determine actual
as a function of time. tVTL

(4) From (3) and (1), ascertain _* re-

quired as a function of time.

(5) From (2), knowing the moon's orbital

position at any time, determine the

actual lead angle _ * as a function of
time.

(6) From (5) and (4), find A _ by subtraction.

(7) The orbital maneuver turn angle AA

is given by

&A = sin -1 (sin A_ sin " ).
1VTL(aetual)

(14)

(8) Find the required AV through the fol-

lowing geometry, where Vp is the

spacecraft speed in the parking orbit:

AV = 2Vp sin (ZXA/2) = Vp AA

for small angles zY_A (15)

The above steps are then repeated in an

iteration procedure, since iVT L varies
(actual)

slightly with AV. This variation, shown in

Fig. 17 as a function of _TL' is very insensitive

to modest values of AV. Also shown in Fig. 17

is the capability of shifting the parking orbit by
_,_, which is strongly dependent on the approxi-

mate time of pericynthion or t3TL.

Below is a rough replica of a parking orbit

regression time trace (see Figs. 14 to 16) to
illustrate the above-described method for ob-

taininginjection tolerances. The sketch shows

one trace reflecting one value of i
em"
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I Time (br)_

Assume that for' a particular lunar mission

the x E axis is located at the designated point in

the sketch for a nominal or design injection.

Assume further that the nominal translunar tra-

jectory injection is south relative to the MOP

and that there is a /',V capability for adjusting the

parking orbit. As was noted in the previous
discussion, this AV capability can be used to

shift the x E axis b) _ an amount equal to ± /x q,.

Therefore, tile solid curves can be altered during

any parking orbit revolution to another starting

point on the dashed curves. It must be remem-

bered that the nominal x E axis on the solid curve

also satisfies the required moon lead angle re-

lationship @,I_; and the relationship, given by
" moves at the same rate as the moon in its

x E ,

orbit and thereby establishes a second trace.

The traces are coincident for the nominal injec-

tion but are separated until they are coincident

again at points A, B, C, D, E and F. These
coincident points represent other possibIe injee
tion times.

Before discussing these points it is helpful to

examine in more detail what is occurring at the

nominal injection point as shown by the following
sketch.

_L

XZo2

_o_.o--_ara,teed

i .,C-*lltnosy _ v=O

/

Time (hr)_

The nominal point, x E' is shown with its initial

parking orbit at the injection point _0" One revo-

lution later, or after a time interval equal to the

period T of the parking orbit, the x E axis lies at

x After two revolutions, the axis lies at
E 1"

x E2, etc. Considering the point XE1; , it is

noticed that the x "E trace is no longer coinci-

dent and a parking orbit adjustment must be
made to shift x to the x" trace. As can be

E 1 E

seen, the amount of shift is within the AV ca-

pability of the spacecraft even for the off-nominal

x E traces. These off-nominal x 'E traces

(± /x_: ) are to be expected, since a change in

iVT L will necessitate a change in the lead angle,

_'x , as pointed out previously, ttowever, from

ChapLet VI, lead angle data indicates that /x_ :'_

will generally be no greater than ±1 ° for an en-
tire month and for the same mission. Therefore

another chance for injection is possible at x El.

If injection does not occur at XE1, another time

interval _- must elapse before injection can take

place at XE2. But at this point, one can see that

x E2 cannot under all conditions be shifted to

x" E because of insufficient maneuvering ca-

pability. Thus the injection tolerance in terms

of injection frequency is 1 and in terms of time
is a little longer than _-, or -r +. The maneuvering

capability AV again becomes sufficient at
cap

point A in the previous sketch, where another

injection frequency can be established. For

purposes of illustration, let the above sketch

also apply to point A, although the zero parking

orbit revolution generally will not be coincident

with tile x E and x" E traces. Here, it is seen

that an injection can be made at x E , x
-1 Enominal

and x E1 because both traces are starting from

the far 1eft before becoming coincident, whereas
in the initial nominal case, both traces started

at tile coincident point. The injection frequency

now is 3 and the guaranteed injection tolerance

is 2T+. The same reasoning applies to points

B, C, D, E and F.

It was assumed that the nominal case resulted

in an "inject south" case. At points A, C and E

the resulting injection will be toward the north

relative to the MOP and again toward the south

at points B, D and F. If the nominal injection

was toward the north, then the injections would

be cycled correspondingly for the points.

Figures 18 and 19 present actual data for two

nominal cases occurring at/}TL = -2"20<' and -65 °

q'he first value represents conditions that result

in a minimum injection frequency, and the second

value gives a maximum frequency. A parking

orbit altitude of 525.8 km is assumed together

with iem = 21.5 ° and iVE = 30 ° .

Table 7 gives the guaranteed laurich fre-

quency and tolerance for the case where the

injection is planned during tile first f}arking
orbit revohltion after ascent ft-om earth.
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TABLE
/3TL=-220 °

Z_V
cap Fre Tolerance

( m /sec) iquency (hr)

76.2 0 0

152.4 0 0

3O4.8 1 2.7

/3TL = -65 °

Fre - Tolerance

quency (hr)

2 3.5

4 6

8 13

Table 8 gives launch frequency and tolerance

for an injection planned many orbital revolutions
in advance, such as a logistics mission or in-

jection under circumstances similar to point A

on the sketch on page V-17, is mentioned above.

TABLE 8

AV
cap

(m/sec)

76.2

152.4

304.8

flTL = -220°

Fre- Tolerance

quency (hr)

0 0

1 1.5

4 5.8

_TL = -65°

Fre - Tolerance

queney (hr)

5 7

i0 15.6

20 31.5

As can be seen AV = 304. 8 m/sec will
cap

provide a launch frequency of at least 1 for the
most unfavorable situation.

If an injection must be delayed until the next

opportune time or a few succeeding opportune
times (points A, B, C, D, E, F on the sketch on

page V-17), necessary fuel and life support re-

quirements must reflect this possible waiting time.

As a matter of interest, in Figs. 14 and 15,

the minimum and maximum waiting times be-

tween possible translunar injections are noted.

In Fig. 14, for example, the minimum waiting

time between opportune injection times is 10 hr

for iVE = 28.57 ° and 12.4 hr for iVE = 33.7%

The maximum waiting time is 253 hr for an

iVE = 28.57 ° and 250 hr for iVE = 33.7 ° .

2. Propulsion System Requirements and Limi-

tations During Injection

In the introductory paragraphs of the present

chapter three advantages of earth departure by

parking orbits were mentioned. The first, feas-

ibility of final onboard and ground checkouts,

should properly be discussed by the systems de-

signer of a particular vehicle, so this point will
not be elaborated in this Handbook. The increase

in launch and injection capability has been dis-
cussed in detail in Sections A and B and Subsection

C-1 of the present chapter. It remains to show

why a parking orbit prior to injection leads to a

single and most efficient injection trajectory pro-
file. Additional use of the variable translunar

trajectory technique (Section B), as opposed to

the direct ascent, ensures a single and most ef-

ficient ascent trajectory.

The first sketch below illustrates on the ce-

lestial sphere the possible launch periods, points
A to C, A' to C' on the launch parallel of latitude,
for arrival at the moon when the moon is at its

ascending node (see also Subsection C-1 for a
more detailed discussion), while the second

sketch illustrates the translunar trajectory in-

jection parameters in the trajectory plane for
the same conditions.

N

Tranelunar

Trajectory

_-_ A(launoh)
l

injection) /

-C(InJection

If a direct injection is performed (no parking
orbit),the ascent range _ from launch to injection

is essentially constant or small for a given launch

vehicle and it can only be launched during the

period when the launch site is between points A,

C, A', or C'. When Cape Canaveral is near po-

sition A, O_0 is typically 67 °, with an ascent range

angle _ = 15 °, and an injection flight path angle

"Y0 z 30 o. Similarly, when Cape Canaveral is near

position C, 40 = 143 ° , _ = 15 ° , "Y0 --- 70°" If Cape

Canaveral is located near point A' or point C',

the required Y0 is negative and the spacecraft

would lose altitude and atmospheric drag would

cause a reentry. Another, completely impracti-
cable, alternative would be to reverse the direc-

tion of vehicle motion. In fact, with a launch

site in the northern hemisphere it becomes very

difficult to perform direct departure lunar mis-
sions at all. For instance, with direct launches

during the period when the moon is near its

maximum northerly declination, zero launch

frequency for many days of the lunar month

can be expected.

In order to demonstrate the sensitivity of the
flight path angle to energy expenditure, two rep-

resentative plots of injection energy requirements

to parabolic speed from a circular parking orbit

are presented in Figs. 20 and 21. The characteristic
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_Injection Phase(A _0 )

_Parking Orbit

_ h a'ectOr

Indirect Departure Inj-ctin_ F_int

• xE --_ Moon

velocity of the maneuver is presented as a

function of h 0 (injection altitude) and x:0 (injection

flight path angle) for representative solid or

liquid launch vehicles.

Figure 20 is for an initial thrust-to-weight

ratio T/W 0 = 0.5 and Fig. 21 for T/W 0 = 1.5.

A specific impulse I = 420 sec is used, and
sp

the initial parking orbit altitude at which the

maneuver is started is hp = 183 km.

Note that the besl flif,;ht path angle to mini-

mize the energy requirements for this departure

from the parking orbit is greater than 2 ° but less

than 7 ° for values of T/W 0 considered. The

data presented in these figures are also indicative

of the trends that can be expected for direct

launches. An increase of _0 beyond 7 ° drastically

increases the AV requirements. Therefore

flight path angles of 30 ° or 70 ° would require

very large quantities of fuel to counteract gravity

losses during ascent, an inefficiency which is

entirely unnecessary if parking orbits are em-

ployed prior to injection. It is obvious that if a

given set of values (V 0, h 0, Y0' ix_0 ) represent

the most efficient injection, the 00 required to

fulfill a hmar mission with these injection con-

ditions can be achieved b F a parking orbit, as

indicated in the previous sketch.

3. Abort During Injection

When the proper position of the spacecraft
relative to the moon has been achieved in the

parking orbit phase, the vehicle is accelerated

to the translunar trajectory injection velocity.

This maneuver is the injection phase, (_0 0) and

it establishes a ballistic trajeetor2 with sufficient

energy and the proper characteristics for the
lunar mission. For a manned mission; it is

highly desirable to provide for the safety of the

crew in the event of a system malfunction, which

means guaranteeing the safe return of the space-
craft to earth. Two methods can be used for a

safe return during the injection phase. The

first immediate return employs an abort maneuver

that results in a re-entry of the spacecraft within

a few minutes, while the second method, n(_rmal

return, requires one revolution prior to re-entry.

a. Immediate return

The abort maneuver technique used for an
immediate return calls for a maximm-n deflection

of the spacecraft's velocity vector toward the

earth as shown in the following sketch.

vj

A_V

• f Abort

VA Trajoct _,:,y

%o_ - \ -. $._ _v n t ;-,.v

_'- De nse L _ y _.r...-- J
\of the / / \ /.q>

The spacecraft initially has a speed V. and
• j

fIight path angle "Yj at the time of abort. Thrust

is then applied at a firing angle _ resulting in a

characteristic velocity _V A of the abort ma-

neuver. Tim thrust orientation angle _ is such

that the total deflection angle (Sj - "yA ) is a

maximum for a given /xV A and is determined by:
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-1 -AV
_ = cos (..--VV). (16)

Although the velocity of the spacecraft after

the abort maneuver, V A, is somewhat less than

V., the flight path angle -'yA is the prime cri-3

teflon for establishing the abort trajectory, h'A

must be negative (V A bolow the local horizontal)

if re-entry is to be accomplished immediately.

Ilowever, at the re-entry point, the abort tra-

jectory results in a re-entry velocity V R and a

re-entry flight path angle _'R " If YFI _s not suf-

ficiently negative for V R at the re-entry altitude

hbl , then the spacecraft will skip back out of

the atmosphere. Conversely, if Yblis too steep,

the spacecraft will undergo re-entry decelerations

and heating rates beyond design limJ.tations.

Thus, there is an acceptable range of V R and Vl_

at altitude hi{ that permits a safe re-entry. By

neglecting the atmosphere for the moment, the

range of re-entry conditions (hR, VI{ , T it) results

in minimum and maximum vacuum perigee alti-
tudes. This difference in altitudes is referred

to as the "safe re-entry corridor" and is further

discussed in Chapter X. Of course, this corridor

depends on the configuration of the re-entering

spacecraft.

In executing the abort maneuver, a minimum

AV A is needed if the abort trajectory is planned

so as to acquire the upper limit or "skip bounn-

ary" of the re-entry corridor, since by doing this,

("_j - "_'A ) is minimum. This upper limit is more

commonly referred to as the "single pass over-

shoot boundary."

Such a boun:_ary is shown in the lower' left

corner of Fig. 22 for a re-enterin_ spacecrail
b

with a lift -to-drag ratio of-_- _ -0. 5,

which is representative of a blunt-body space-

craft configuration. "Fire propellant requirement

Wf for an L/D = 0 increases the mass ratio by

Wf

about [ = _ = 0.03, which corresponds to an

additional /xV A of approximately 150 m/see over

the value obtained from Fig. 22, as was pointed
out in Ref. 3,

The boun:tary is presented as a function of the

speect Vj anti flight angle "yj for various alti-

tudes during the injection phase, and it assumes

hp<_198.1 kin. It should be noted that the higher

hp, the more difficult it is to perform an immed-

iate return. Figure 22 also allows the determi-

nation of the required _V A for an immediate re-

turn abort during the injection phase for various

values of T/W 0 and Isp 420 sec.

A source of AV A losses arises from the im-

plementation of the abort maneuver itself. Us-

ually, the sequence of events consists of sep-

arating the spacecraft from the injection stage

and orienting the spacecraft to the desired thrust
attitufle _ . This takes time, and it has been

shown (Ilef. 3) that a delay of only 30 sec requires

an additional amount of propellant equivalent to

Wf
a mass ratio of _ = -- = 0.07 to 0.10. which

W 0

corresponds to AV A : 350 to 500 m/see. The

reason for this is that the spacecraft velocity is

near the parabolic speed, resulting in a centrifu-

gal acceleration almost twice as large as the

acceleration due to gravity and hence a rapid in-

dyj
crease in hj (_T- = 0.05°/see).

b° Normal return

From the previous subsection, it was found

that an immediate return abort may require

large amounts of propeIlant, especially if

T/W 0 < 4.0 and hp> 200 kin. This implies the

use of high-thrust rocket engines, and possibly

more than 40% of the spacecraft weight must be

in the form of fuel and propellant system dead

weight. If design consideration or operational
concepts prohibit the immediate return method,

then the abort must be conducted differently.

The normal return method is pictured in the
sketch below.

/

/

/

/

_/ ar

C,'3t _.: ,_,or

\_pogee

Abort Trajectory \

If at a certain point in the injection phase

(Vj, rj) an abort becomes necessary, thrust is

applied parallel to the velocity vector V but in

the opposite direction (retrograde, _ = 180°).
This technique can bc used since it minimizes

the return time to earth and consequently provides

a form of time control. After' thc abort burning

phase, the spacecraft continues along its abort
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trajectory until apogee. At this time, small
mideourse corrections are made in order to en-

sure that the vacuum perigee of the abort tra-

jectory lies in the re-entry corridor. There are

two reasons for making the mideourse correction

near or at apogee: (i) Perigee conditions can be

changed most efficiently; (2) There is sufficient

time for tracking and calculation of the actual

abort trajectory prior to and after the mideourse

correction.

Although the spacecraft may have a certain

AV A potential, it does not mean that the entire

potential should be used for the abort maneuver.

Generally only a portion of this capability will

be used, as can be seen from Fig. 23. It pre-
sents the time to return to earth from abort to

re-entry as a function of speed V at the time of
3

abort for various AVA'S. Data are shown for

an initial T/W 0 of approximately 1. 1 and

I = 420 see. In this figure, for a typical in-
sp

jection trajectory profile as given in "Fable 9 be-
low, it is noticed that if there is a limited con-

trol on AV A application there is a corresponding

limited control on the return time. This in turn

allows some control of the geographical re-entry

point. In the lower speed range, time of re-

entry can be controlled within 2 hr for the AVA'S

quoted. This results in being able to vary the

re-entry point by 30 ° in longitude. In the higher

speed range, re-entry longitude control can vary
from 150 ° to 360 ° . Thus, suitabie and specific

landing sites can be reached, thereby reducing

the size of recovery forces and the number of re-

quired landing areas.

Also given in Fig. 23 are the apogee altitudes
that result from an abort maneuver. These al-

titudes may be as high as 50, 000 km, in which
case two or more mideourse corrections are re-

quired to ensure safe re-entry. Depending on the

incIination of the trajectory, there may be restric-

tions on apogee altitude because of the Van-Allen
radiation belt.

In addition, the immediate return capability

is shown to exist only in the very low-speed re-

gime for the conditions presented.

TABLE 9

Typical Injection

V h.
J J

(m/see) (kin)

7, 924.8 198.1

8_

9,

9,

10,

10,

534.4 199.6

144 203.6

753.6 210.3

363.2 220.1

972.8 233.2

Trajectory Profile

J

(deg)

0

0.7

1.8

3

5

7.6

Notes

Parking orbit conditions

Injection phase

1
Injection conditions

This concludes the discussion of abort during

the injection phase. Abort and re-entry, prior to

the parking orbit phase and while in the parking

orbit, are considered earth-orbital type aborts.

Re-entry and recovery data for earth satellites

are presenied in Chapters VIII and IX of Ref° 1,
and abort data for the parking and intermediate

orbit phases can be obtained from this reference.
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Fig. 4. AV Versus Launch _ime
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FIE. 8. AV Required For Launch Tolerance
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Fig. 13. Launch Tolerance
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Fig. 18_ Injection Tolerance And Frequency For

'Missed' Scheduled Injections (Case 1,_T_= -220 ° )
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VI. EARTIt TO MOON Tt{ANSFEII

Chapter V presented various techniques for
leaving the launch site on the earth's surface and

arriving at the proper injection conditions to estab-
lish a translunar trajectory satisfying certain mis-

sion constraints. These injection conditions con-

sist of a specific time, velocity vector and radius

vector. One purpose of Chapter VI is to graph-

ically catalogue all possible injection conditions
that reflect certain mission constraints in suffi-

cient detail to serve as a primary source for de-

sign and mission planning work. Heavy emphasis

is placed on circumlunar trajectories which re-
turn ballistically to earth; these were defined in

Chapter IV and are described qualitatively and

quantitatively in Section A, below. Although no
data is presented in Chapter VI for the class of

lunar trajectories that do not return ballistically
to the immediate vicinity of tile earth, or approach

trajectories, such data is included in Chapter IX.
No injection data for lunar impact trajectories is

included in the handbook except in discussion form

in Chapters IV and VIII.

Chapter IV gives a description of the Voice

technique which is used here to generate lunar

trajectories by means of the patched two-body
conics around the earth and moon. It is this

technique that was used to generate the trajectory

data found in this chapter and Chapters IX and XI.

By referring trajectory data to the moon's orbital

plane (MOP), which is a plane of symmetry,

trends and tradcoffs between the various trajec-

tory parameters are easily obtained and under-

stood, and the number of graphs can be reduced.

For tile same reason, all data is general and thus

applicable /'or any lunar position in orbit. If the

lunar position in orbit at a certain date is needed)
Chapter XI gives auxiliary graphs that allow inter-

pretation of the general data of this chapter for

specific dates. Comparisons with numerically
integrated trajectories arc also presented to prove

the validity of the Voice data and to illustrate its

accuracy.

Sections B and C of this chapter present the

better-known concepts of navigation and guidance

used for lunar missions, mostly in qualitative

form. Some numerical data is given to compare

and illustrate the various concepts. Of special

interest are the ground traces of several circum-

lunar trajectories shown in Figs. 4 and 5, and

discussed in Subsection B-2 on tracking.

Finally, implications of performing an abort
from a transhmar trajectory arc included in Sec-
tion D, in which will be discussed and illustrated

the timing of aborts for return to a particular

earth base, nonptanar abort maneuvers and their

consequences, and the possibility of establishing

"abort way-stations" along the translunar trajec-

tory.

A. INJECTION REQUIREMENTS FOft
LUNAR TRAJECTOf/IES

The data of this chapter concerns only circum-

lunar trajectories, as they are most likely to be

used for" manned lunar missions. A spacecraft in

a circumlunar trajectory departs from the earth,

transfers ballistically to the vicinity of the moon,

and achieves its closest approach, or pericynthion,

as it passes behind the moon. Tile gravitational

attraction of the moon turns the trajectory in the

general direction of the earth, and the vehicle

continues in a trajectory which brings it to the

vicinity of the earth. The passage from the earth
to the moon is referred to as tile "translunar

trajectory," while the return passage is termed

the "transearth trajectory." This class of tra-

jectory and possible related missions has been

discussed and illustrated in Chapter IV.

1. Tile Circumlunar Trajectory Catalogue

Ti_e nomenclature of the Voice technique,
which has been introduced in Sections B-8 and C

of Chapter IV, is repeated here for convenience

and discussed more fully because the graphical
data of this chapter has been derived from this

technique. The leading sketch, opposite, is a

schematic showing the Voice Cartesian coordinate

axes and some of tile trajectory nomenclature and

parameters. Tile xE-axis is defined by the inter-

section of the translunar trajectory plane with the

moon's orbital plane (MOP) and is directed toward

the moon. The zE-axis is defined by the angular

momentum vector of the moon about the earth's

center, while the YE-axis completes the right-

hand coordinate system. The inclination of the

translunar plane to the MOP ts given by iVT L,

0 ° _ iVT L _ 180 ° , and is measured as shown in

the leading sketch. The velocity and radius vec-
tors at injection, or the initial conditions of the

lunar trajectory, define the translunar plane.

The injection conditions are specified as de-

scribed below and illustrated on the following
sketch :

0

_o } hO
T F a n S _ U n _l F_-2J_x

Earth

V0 is the injection velocity measured relative

to the nonrotating XEYEZ E system centered at tile

earth; Y0 is the local flight path angle measured

from the local horizontal to the velocity vector.

The injection altitude, h0, is defined by h 0 - r 0

- It4), where r 0 is the radius vector at injection

and t{ O = 6371.02 km is the radius of an equiva-

lent spherical model of the earth. The specifica-

tion of tile injection is completed by tile angle

J_0' which orients the injection point with respect

VI-1



totheVoicecoordinatesystemandis measured
fromthenegativexE-axisto r0, asshownin the
leadingsketch,facingpageVI-1.

A very importantconceptis thatofthecardinal
directionswhentheMOPis usedasareference
planefor thetrajectoriesin thishandbook.By
definition,thezE-axisis designatedasthe
"North"directionand"East" is in thesamedi-
rectionasthemoon's orbitalmotionaboutthe
earth. Thus,when0<iVTL < 90°, injection

is in the northern hemisphere (relative to the

MOP) and is direct, or in the direction of the

lunar motion in orbit, or "East" (see Subsection

A-8 of Chapter IV). When 90 ° < iVT L < 180 ° the

injection is again north of tile MOP, but in this

case the direction is a retrograde or, west-

ward injection. The same reasoning applies for

injections taking place in the southern hemisphere

relative to the MOP. Since all data is presented

with positive values of iVTL, the type of injection

must be specified together with the value of iVTL;

e.g., iVT L = 60 ° (inject north),or iVT L = 60 °

(inject south). In Chapters V and XI, Cape Can-
averal is the launch site, and launch azimuths A

e

are arbitrarily restricted to 70 ° < A e < 110 °.

These values of A e result in values of iVT L equal

to or greater than 0 ° but aiways iess than 75 ° , as
can be noted from Figs. 11 and 12 in Chapter XI.

For this reason, data is given for 2 ° _< iVT L _< 75 ° .

The material is presented for the "inject north"

case and must be reinterpreted for the "inject

south" case, as willbe discussed inter in the

chapter. A similar situation exists for the trans-

earth trajectory, as was noted in Chapter IV.
The transearth inclination to the MOP is denoted

by iVT E and is measured positively, as shown.

For convenience, the sketch is repeated here with

an explanatory table relating return direction to

quadrant.

M0 ¢o_

Earth

Transearth

Trajectory Inclination

0 o < iVT E < 90 °

90 ° < iVT E < 180 °

-90 ° < iVT E < 0 o

-180 ° < iVT E < -90 °

Return Direction

Direct from the north

Retrograde from the north

Direct from the south

Retrograde from the south

The circumlunar trajectories have been graph-

ieally catalogued for specific mission constraints--

namely, the pericynthion altitude ,hpL , the earth-

moon distance R_, and vacuum perigee altitude

of the transeartht_ajectory hpE . The circum-

lunar trajectory catalogue includes data for hpL

from 185.2 km to 5000 km where hpL = rpL

-Re with rpL the radius from the vehicle to the

center of the moon at pericynthion and R(I =

1738. 16 km is the radius of the spherical moon

model. Rq)li is varied from 56 ER (earth radii) to

64 ER, which represent the minimum lunar per-
igee radius and maximum lunar apogee radius,

respectively, that can be encountered because of

the eccentricity of the lunar orbit. The Voice

data for these R®q was generated by keeping the

angular momentum of the moon constant and as-

suming the moon to be in a circular orbit around
the earth. Atl transearthtrajectories have a

vacuum perigee altitude of hpE = 46 kin.

In addition to the injection conditions of iVT L,

V0' "_0" h0 and q_0' the flight time to pericynthion

t and the total flight time from injection to
P

perigee (T) aiso are recorded.

It is well to note at this time exactly what the

catalogue contains and then to discuss each item

separately in detail sufficient to provide a working
knowledge of the materiai. The catalogue itself

consists of Figs. C-1 to C-83 and contains the

foIlowing trajectory constraints:

TABLE 1

Circumlunar Trajectory Catalogue

(earth
Case radii)

1 56

2 56

3 56

4 6O

5 60

6 6O

7 6O

8 64

9 64

10 64

hpL

(km)

185.2

1000

5000

185.2

1000

3000

5000

185.2

1000

5O00

Figure

Numbers Pages

C-1 to 8

C-9 to 16

C-17 to 24

C-25 to 32

C-33 to 41

C-42 to 50

C-51 to 59

C-60 to 67

C-68 to 75

C-76 to 83

IV-48 to 56

IV-57 to 64

IV-65 to 72

IV-73 to 80

IV-81 to 89

IV-90 to 98

IV-99 to 107

IV-108 to 115

IV-116 to 123

IV-124 to 131

Trajectory data is given by the following var-

iables as a function of iVT E for each of the above

constraints:

(i) V 0 (5) t P

(2) ¢0 (6) T

(3) _* (7) i m

(4) A V (8) 0 M

VI-2



and havenotThevariables_* /x V, i m OM

been mentioned previously in this chapter but will

be discussed in sequence along with the others.

(1) V 0 --the required injection velocity

for the circumlunar mission. Figure

C-1 shows V 0 as a function of iVT E

for f{G_ = 56 ER and hpL = 185.2 km.

The independent parameter is iVT L ,

and its particular values are 2 °, 30 ° ,
60 ° and 75 ° . The first trend noticed is

the fact that V 0 increases as iVT L

decreases. By referring to Figs. C-9

and C-17, it is observed that this trend

remains the same and that the variation

in V 0 due to iVT L is 6 to 20 m/see,

depending on hpi2 For [_OI of 60

and 64 EI_ (Figs. C-25, C-34, C-35,

C-42, C-43, C-51, C-52, C-60, C-68

and C-76),this variation does not sub-

stantially change. Another trend in-

dicates that V 0 is lower if the trans-

earth trajectory is direct rather than

retrograde. The difference between

returning direct in the MOP and retro-

grade in the MOP is approximately 25
m/see for aIi cases. It is also noticed

that V 0 decreases as hp increases

but increases as b_@ff increases. The

maximum V 0 encountered for the above

cases is 10922.8 m/see and occurs for

R@_ = 64 Ef%, iVT E = 180 ° , hpL= 185.2

• = 2 °"km and 1VT L

(2) _0--the injection position as given in

Figs. C-2, C-10, C-18, C-26, C-35,
C-44, C-53, C-61, C-69 and C-77.

There is no appreciable change in the

value of _0 as 1_@¢ is varied if hpLiS

maintained constant. Itowever, if hpL

is varied a significant change does occur.

(3) { --moon lead angle. This variable is
discussed in Chapter IV, Section C, but

for" convenience is depicted in the sketch

on page (it) of thi_ chapter. It is meas-
ured from the lunar po._ition at injection

to the xE-axis, and its magnitude varies

from .3(/° t(_ 6(I ° . This is a very impor-

tanl angle when obtaining numerically

inlegrated trajectories.

(4) _ V--required velocity impulse to enter
a circular lunar orbit from the circum-

lunar trajectocy. If the spacecraft were
to enter a circular orbit about the moon

at the time of pericynthion, a charac-

teristic velocity impulse would be re-

quired to reduce the speed of the space

vehicle to circular orbit velocity (see

Chapter IV, SubsectionA-4). Figures

C-4, C-12, C-20, C-28, C-37, C-46,

C-55, C-63, C-71 and C-79 present

/xV as a function of iVT E, and it is

immediately noticed that _ V increases

as iVT L increases. By varying iVT L

from 2 °to 75 °, a _V change of 30 to

60 m/sec may be realized, depending on

hpL. R@{ has little effect on this change

but does influence the magnitude of the

impulse by as much as 50 m/sec (A V

decreases as t{®_ increases). Again,

as is the case for V 0, smaller values

of _ V are required for direct return

trajectories. The maximum & V en-
countered for the eases in the above

table is 1045 m/sec, which occurs

for the following conditions: R_{ =

56 ER, iVT E = 75 ° , iVT E = 180°, hpL =

185.2 km.

(5) t --time from injection to pericynthion.
P

As expected, tpincreases with iVT L,

since V 0 decreases with iVTL; tp

aIso increases as hpLand R@¢ increase,

and the longest times are realized with

"direct" returns. This data is pre-

sented in Figs C-5, C-13, C-21, C-29,

C-38, C-47, C-56, C-64, C-72 and

C-80.

(6) T--total flight time measured from in-

jection to perigee. This particular

variable is markedly influenced by hpL.

In fact, one may expect an increase of

35 to 65 hr(depending on iVT E) by in-

creasing hpi _from 185.2 km to 5000 kin.

T is also increased by approximately

25 hr if R@{ varies from 56 to 64 EI_

(with hpLheld constant). The data

giving T versus iVT E is found in Figs.

C-6, C-14, C-22, C-30, C-39, C-48,

C-57, C-65, C-73 and C-81.

(7) i --inclination of the Iunar orbit to the
m

MOP, 0 °_i m__ 90 ° • If the spacecraft

enters a lunar orbit at the pericynthion

point (item 4), the resuIting lunar orbit
will be inclined to the MOP by an angle

i . Because of the importance of this
m

angle, a sketch showing i m is repeated

at this time fron_ Chapter IV. Figures

C-7, C-15, C-23, C-31, C-40, C-49,

C-58, C-66, C-74 and C-82 present ira,

and a very interesting and significant
result is that i is limited to 25 ° for

Ill

hpl _ = 5000 km and to less than 15 ° for

hpL = 185.2 kin. This clearly implies

that high selenographic latitudes
( 25 ° ) are inaccessible for landing
or l'eeonnaissanco missions un]es5; {h( _

velocity vector is turnecl at pericyn-

thion. This maneuver requires rel-

atively much fuel, and hence, circum-

VI-3



Lunar _o _'_
Orbit _/o _

onts_

__ ---7.1/ Motion

( Pericynthion

2.

lunar trajectories will result in fly-bys
and lunar orbits that lie in a narrow band

above and below the MOP. Furthermore,

lunar librations will not improve this

coverage to any great extent.

(8) 0 M--angle between the earth-moon line

and the descending node of the lunar

orbit, -180 °__ 0 M _ 180 °. At the time

of pericynthion (tp), the descending

node of the trajectory plane is displaced

0 M degrees from the earth-moon line

(E--_). This angle is also shown in the

above sketch, and it, together with i m,

completely describes the orientation

of the trajectory plane at t as well as
P

the orientation of the circular lunar

orbit that may be established at this

point. Data relating 0 M with iVT E

for various iVT L are given in Figs.

C-8, C-16, C-24, C-32, C-41, C-50,
C-59, C 67, C-75 and C-83. Another

important fact, not mentioned above,

is that for a constant value of iVTL,

an earth return is possible from any

direction. This can be extremely

useful in establishing operational
concepts for lunar missions.

Generalization of the Catalogued Data

The catalogued data, extensive as it is, does

not cover all parameters of the translunar trajec-

tory. The material presented is applicable only

for an injection flight path angle _0 = 5" and an

injection altitude h 0 = 250 kin. The following

discussion presents methods whereby Y0 and h 0

may be extended to other values.

First, consider that h 0 remains 250 km and

it is desired to change _0 to a value ¥0 other than

5 ° . It has been found that all data in the cata-

logue, except for _0' remains essentially the

same and any changes that do occur are altogether

insignificant on the scale of the graphs. A new

_0' denoted by _ can be estimated to within ±0.2 °

for A Y0 as high as ±20 ° by means of the following

empirical relation:

_ = _0 + 2 Z_ Y0 (1)

where _ = catalogue value

_ = revised value of _0

: - = Y6-5°
YO = catalogue value

"_ = desired value of _0

Values of "¢_> 25 ° are improbable for earth de-

parture by present boosters because of the higher

fuel requirements, while values of _ < - 15 ° cause

the spacecraft to re-enter the earthts atmosphere

Next, consider that _0 remains unchanged,

i.e., _b = "_0' and that it is desired to alter h 0

by an amountZ_ h 0. For A h 0 less than +250 kin,

the data in the catalogue again does not change,

with the exception of the injection velocity V 0. A

new value of V 0, denoted by V_, can be deter-

mined for the desired h 0, which is denoted by

h_ through use of this equation derived from the

conservation of energy in a restricted 2-body

system:

V_ =IV02 l/Xho11 1/2- Vp 2 _-_0 ]d (2)

where V 0 = catalogue value of injection vel-
ocity

Vp =parabolic speed at the desired h 0

/x h0 = h_ - h 0

h 0 = catalogue value of injection altitude

r 0 = radius from the center of earth to

h 0 •

Observing that Eqs (1) and (2) are independent

of each other, both "¢0 and h 0 may be varied to-

gether. An example of the use of these equations
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is includedin thesecondsamplemissionin
Chapter X1.

If h_ is extended to 2000 Mn by means of Eq

(2), small errors appear in the other parameters.

These errors may be acceptable for feasibility

trajectory calculations. The brief table below

gives the maximum magnitude of these errors for

the various parameters if the catalogued data is

extended to h_ = 2000 km:

V 0

q'0

AV

tp

T

i
m

0 M

where:

Maximum Error

+1.5 m/sec

+1. 3 °

±0 2 °

-5 m/see

+0. 3 hr

*0.6 hr

-0. 7 °

-3 °

parameter error = actual parameter value-

estimated parameter value (from Eq (2)).

Therefore, the catalogued data in Figs. C-1

through C- 83 can be applied to most circumlunar
trajectories of interest. The catalogued trajec-

tories ar_ for the "inject north" case only as was

mentioned previously. Since the reference plane

is a plane of symmetry, the material can easily

be reinterpreted for the "inject south" case by

redefining the return inclination (iVT E) scale
on the figures by:

iVT E (inject south) = - iVT E (inject north) (3)

A simple example illustrates this readily. Sup-

pose that for the "inject north" case, iVT L =

60 ° and iVT E = + 40 ° , which is a return direct

from the north. Therefore, for the "inject south"

case, iVT L remains the same, but iVT E = -40 ° ,

which is a return direct from the south.

The lunar orbit orientation 0 M for the inject

south case is interpreted in the fotlowin_ manner.

0 M (inject south) = 0 M (inject north) + 180 °

3. Accuracy of Injection Conditions and Trajectory
Data

Since the data presented in Figs, C-1 to C-83

was derived from an approximate force model of

the earth-moon system, it is necessary to ascer-
tain the accuracy of such data. To this end, the

catalogued Voice trajectory data (patched conic

force model) was spotchecked with numerically

integrated trajectories which were generated by

using the more accurate restricted 3-body force
model with the moon in a circular orbit about

the earth (angular momentum is constant). The

selected trajectories are considered extreme in
the sense that they represent the maximum in

accuracy to be expected between the Voice and

integrated trajectory results. For instance, high

values of iVT L (>60 °) and small values of R@q

(_ 56 ER) produce larger errors in V 0, tp and T.

Table 2 presents four circumlunar trajectories ,
giving the comparison of the previously discussed

parameters. Trajectories 1 and 2 are presented
to demonstrate the differences between the Voice

and integrated results for the extreme conditions

just mentioned. Below is a brief account of the
likely errors that can be encountered in such ex-
treme cases,

/" V 0 _- 2.3 rn/sec (error = Voice data -
integrated trajectoryA

_b0 _- 0.4 ° data)

A_ _ -i o

AhpL ._ 0

A(AV) _ -20 m/see

A i _ -0.5 °
m

AO M < -2 °(iVT b .-. 15 °)

A 0M _ -0.6 °

A iVT E _ 0

At -_ 0. 7 hr
P

where the error is defined as the difference be-

tween the Voice and the restricted 3-body force

model.

But more important than determining the accept-

ability of the Voice model is the substantiation of

the trends indicated by Voice. Trajectory 1, for
instance, shows the feasibility of leaving the earth

with highly inclined trajectories and also returning

with very high inclinations relative to the MOP.

Trajectory 2 depicts in part the opposite case,

i.e., injecting into a highly inclined translunar

plane but returning with extremely low inclin-
ations, in fact almost in the MOP. In trajectory

3, a complete reversal of trajectory 2 is shown.

This trajectory has a very low inciined trans-

lunar plane (iVT L = 2 ° ) but returns to earth

with a transearth inclination of approximately

75 ° . The last trajectory, number 4, has a re-

mote pericynthion altitude (hpL = 5000 km) and

the moon is near apogee or at R$¢= 64 ER. In

addition, the entire circumlunar trajectory is

essentially in one plane. Thus, some important

trends indicated by Voice are easily verified

by the numerically integrated trajectories given

in Table 2, and it is possible to conclude that

the inaccuracies inherent in utilizing a patched

conic method are acceptable for initial feasibility

trajectory studies.

As a final point, the resulting lunar orbit

orientation about the moon (i m, 0 M) is in remark-

able agreement with that obtained By integrated
trajectories. This fact is a major reason that

the use of Voice data for mission planning, fur-

ther discussed in Chapter XI, is practical. If

desired, a more accurate value of 0 M can be ob-

tained by, applyingan empiricai correction, given

by
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f- /

= + _0.')9 + 0.000156; hpL I D

L J

C 0 siKl iVT E + 1 (4)

%V }1(2 ['e

+ holds for the "inject south" case

- tlolds for the "inject north" ease

C O is obtained from Chapter XI, Section E;

a constant derived from enlpirieal data.

The corrected value of 051 , 0M_'_, is given by

0 M = 0 M + 'GOE l

and is also noted in Table 2.

B. NAVIGATIONAL AND TRACKING

REQUIREMENTS

Navigation is defined as the process of deter-

mining tile position and velocity of a space ve-

hicle; this process is usually accomplished by

making observations such as star occultations by
the moon, bearing lines to certain stars, angular

diameters of the moon, earth and sun and from

these observations computing the vehicle position

and velocity vector. The problems of navigation

in cislunar space, discussed in tMs section, are

greater than those encountered in eartia orbit
since vehicle trajectories far from earth are

significantly influenced by the lunar gravitational
attraction, since trajectory sensitivities (the

partial derivatives of trajectory parameters

with respect to initial conditions) increase drasti-

cally, and because of uncertainties in the force
model and in the astronautical constants. Thus,

some means must be developed to determine tile

vehicle trajectory in flight, or tile deviation of

the actual trajectory from the nominal trajectory.

The procedure used to determine tile new ira-
jectory is referred to as the navigation tech-
nique. The observations fHndamental to a

particular technique may be made from the space-
craft itself, from tracking stations on the earti_,
or from tile lunar surface° A number of feasible

navigation techniques for cislunar space can be
devised if tile methods for making the necessary

navigational observations are available. The

techniques discussed in this section include

navigation by means of nominal or precomputed

trajectories and trajectories computed in flight.

A third technique, described as a "homing''

technique (Ref. 1) utilizes line-of-sight orien-
tation to ensure interception with the tar;_et.

However, this technique has not yet been ade-

quately proven for hmar missions, so it will
not be discussed further.

The question remains of what to do when tile
deviation of the aclual from the nominal trajectory

has been determined, that is, how to return to the

original trajectory t)r correct the actual trajectory
in order to fulfill tim ,nission. These midcmwse

guidance and energy requiFe[netlts will be discussed
in Section C.

1. Navigational Techniques

a. Observational considerations

Before discussing the details of various navi-

gational tectmiques, it is necessary to decide what
observations are to be made and how they are to

be used in order to provide an improved estimate

of position and velocity. Bait|n, in Hcf. 2, has de-

veloped a procedure for statistically optimizing

navigation for space flight. The detaiied analysis

wili not be presented here, but a short account is

given to emphasize the necessity of such a pro-
cedure.

In a typical self-contained space navigation sys-

tem, observational data is gathered and processed

to produce estimated velocity corrections by rocket

burning (i.e., guidance corrections). Observa-

tional data may be gathered either by optical means

or by radio. Fundamental to tile navigation system
is a proce(hwe for processing observations which

permits incorporation of each individual observa-

tion as it is made to provide an improved estimate

of position and velocity. In order to ol)timize a

navigation technique a number of alternate courses
O1' actiOll must be evaluated. Tilt. Vat'|eLls ;tti, t,t'Ila-

tires, which form the basis of a decision process,

concern the following:

(1) Which navigational observation gives

tile most accurate position?

(2) Does the best observation give a stiff|cleat

reduction in the predicted target error

to warrant making tile observation'?

(:_) Is the uncertainty in tile indicated guid-
ance correction a small enough per-

centage of the correction itself to justify

an engine restart and propellant ex-

penditure ?

Tim time interval from injection to arrival

time at tile aim point (near or on the moon) can
be considered to be subdivided into a number of

smaller intervals t 1, t 2 .... called " decision

points." At each decision point one of three pos-
sible courses of action is followed: (1) a singie

observation is made; (2) avelocity correction is

implemented; or (3) no action is taken. As a

necessary step in tile application of navigation

schemes, certain rules must be adopted for the
course of action to be taken at each "decision

point." Tim number and frequency of observa-
tions must be controlled in some manner--ideally

by a decision rule whict_ is realistically compat-

ible with both the mission objectives and the capa-

bilities of the observing device. If an observa-
tion is to be made, a decision is required regard-

ing the type and the celestial objects to be used.

Periodic guidance corrections must be applied

and the number of impulses and times of occur-
rence must be decided.

Once the decision rules have been specified,

it is necessary to test their effectiveness with

some measure of performance. One typical ob-

jective is to minimize the miss distance at the
moon. However, a reduction in miss distance
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usuallyimpliesanincreaseineithertherequired
numberofobservationsor agreaterexpenditure
of correctivepropulsion--orboth. Thisfact is
demonstratedin SectionC. In tile face of con-

flicting objectives, present in any technique, com-

promises are clearly necessary, and a statistical

simulation helps in arriving at an acceptable bal-
ance.

A common assumption is that secondary ef-

fects arising from the finite speed of light, the
finite distance of stars, etc., are ignored in the

observations. For the calculations,these effects

at a particular reference point on the trajectory
may be lumped together as a modification to the

stored data which represents nominal reference

values for the quantities to be observed at that

point. Also, the question of simultaneous ob-

servations does not arise if the vehicle dynamics
are governed by known laws and if deviations from

a predetermined reference trajectory are kept

sufficiently small to permit a linearization by ex

panding around the nominal trajectory point in a

Taylor series and neglecting second and higher-

order terms.

The essential problem is to select those ob-

servations which are, in some sense, most ef-

fective. For example, the requirement might
be to make the selected observation at a certain

time in order to get tile maximum reduction in

mean-squared positional or velocity uncertainty

at that time. Of perhaps greater significance
would be the requirement to select the observa-

tion which minimizes the uncertainty in any linear

combination of position and velocity deviations.

Specifically, one might select the observation

which minimizes the uncertainty in the required

velocity correction. As a further example, one

might wish to select that observation which, if fol-

lowed immediately by a velocity correction, would

result in the smallest position error at the target

or aim point.

The common methods for making navigational

observations may be subdivided into three prin-

cipal areas:

(1) Optical observation of the angles be-
tween several celestial bodies as seen

from the vehiete.

(2) Radio or optical tracking from the earth

by determining the azimuth and eleva-

tion of the space vehicle.

(3) Radio range (interferometer) and doppler
measurements on the vehicle, the earth,

or the moon.

Methods (2) and (3) will not be discussed since

they are treated in Chapter XI of Ref. 1. How-
ever, a brief remark on the interferometer method

of tracking and navigation will be made. For lunar

flights it is possible to use the earth-moon separa-
tion as an interferometric baseline (Ref. 3). If a

receiver could be established on the moon or at the

libration points, it could easily be synchronized

with a series of such stations on the rotating earth

by means of line-of-sight communications. In
this case the interferometer scheme illustrated

in Chapter X of Ref. 1, where two transmitters

are used at the ends of the baseline, operates in re-

verse. The phases of the transmitted waves are

compared in the vehicle and the radio range from
the vehicle to the stations can be determined. If

each vehicle can carry sufficient computing equip-

ment to transform and act on the received phase

difference data, any number of vehicles can track

themselves simultaneously from the same ground
system. This system is similar to the hyperbolic

LORAN navigation scheme now widely used by air-
craft and ships.

Thc emphasis in this subsection will be on

method (1)--angular observations of celestial
bodies from the vehicle by optical methods. This

technique will be most useful in early lunar flights

since it has been proposed that navigation on
manned lunar missions be handled by the crew and

self-contained optical units be used for unmanned

missions. Two types of measurements, one for

small angles and one for large angles, will be de-
scribed.

Small angles, i.e., those less than a few de-

grees, may be measured within the field of view

of an astronomical telescope. This type of meas-

urement is particularly desirable for measuring

tim apparent diameter of the sun, earth or moon

and the position of these bodies against their
neighboring stellar background, The observations

may be made directly, or the telescope may

be used to photograph the sun, and/or moon and/or

planets against the star background (Ref. 4). In

the latter ease the photographic plates could be
read with an optical micrometer after developing.

The photographic method has the advantage of

"freezing" time, thus permitting a leisurely meas-
urement of what was visible at a single instant.

The technique requires local filtering to reduce

the exposure of the image of the sun, moon or

planet relative to the stellar background. It is

presently used for determining the lunar ephemeris

from the earth, yielding accuracies on the order
ft

of 0, 01. These accuracies, of course, can not be

expected from space vehicle observations. The

photographic method requires a plate-reading

micrometer; however, on a manned voyage it is

very likely that an astronomical telescope and

plate-handling equipment are on board for other

than navigational purposes.

Large angles as well as small ones can be

measured by a type of sextant which may be
either hand-held or mounted in the vehicle. The

sextant has several advantages over the telescope,

notably:

(i) ttaving separate light paths, a sextant

requires no troublesome local filter;

one light path or the other may be fil-
tered as desired.

(2) It measures large angles as well as
small ones.

(3) The optical requirements of a sextant,s

telescope are minimal, since the two

objects whose separation is measured

are brought into coincidence at a single

point rather than being measured over

an extended optical field.

Since a vehicle-borne sextant doesn,t require

manual support, it can be larger than a marine-
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typesextantandcanbeequippedwithahigh-
magnificationtelescopeandareadingmicroscope
for thevernier.

In aspacevehicle,theopticalsystemof such
angularmeasuringinstrumentsassextantsand
star trackershaveaccuraciesof theorderof
0_'1to li'0. However,theobservationaltechnique,
readingerrors, etc.,permitpracticalaccuracies
of theorderof only10"for a singleobservation.
Thisaccuracyis quotedfor'a singleobservation
of pointsourcessuchasstars;thetrackingof ex-
tendedimagessuchastheearthandmoondegrade,
whilethecombinationof anumberof individual
observationsandtheir smoothingto determinea
smallvehicletrajectoryarc enhancethepractically
achievableaccuracy.

All opticalobservationsaresubjectto planetary
aberrationdueto tile finitevelocityof light and
ther'elativemotionof theobserverandtheceles-
tial body. If astationarytelescopeis pointedat
a celestialbody,it is pointingat timpositionwhere
thecelestialbodywaswhentheobservedlight
left it ratherthanwhereit is whenthelight ar-
rivesat thespacevehicle. Theseerrors could
beoftheorderof 10". Therelativemotionof
thevehiclewithrespectto tileobservedobject
or stellaraberrationcausescelestialbodiesto
bedisplacedin thedirectionof thevehiele,sve-
locity. Thisangulardeviation,A, is givenby
theexpression:

2x = sin eb tan -1 <%) (5)

where

¢

VA

= angle between the velocity vector and

the line of sight to the observed object

= velocity of the space vehicle relative

to tile celestial body

= velocity of light, 299, 792.5:L 0.1 kin/

SCC.

These errors are small and easy to correct be-

cause V A /c is very small. For the worst case,

¢ = 90 °, the deviation is about 20,, for V A = 29.8
km/sec.

Several t._1)es of navigational observations can
be made from a space vehicle simultaneously in

order to arrive at tile best determination of posi-

tion and velocity. For example: gyroscopic

techniques can be used for angular measure-

ments; accelerometers for measuring acceler-

ation, primarily during rocket burning or near

the moon and earth; radar techniques for ve-

locity measurements; distance measurements

from the apparent diameters of celestial bodies

in tt_e solar system; and time measurements
ft'om clocks and from the motion of celestial

bodies in tim solar system. These are all dis-

cussed extensively in [gel'. 5.

b. Analysis of two navigational techniques

Two navigational tecimiques, referred to as

technique 1 and technique_ _,"_ for determining

spacecraft position by means of optical observa-

lions of celestial bodies will now be analyzed in

detail. In technique 1 it is assumed that the

nominal spacecraft position and velocity vectors

are known so that perturbation methods may be

employed in determining the actual position and

velocity from the nominal. All measurements
are assumed to be made at exact instants of time.

Technique 2 on the other hand does not require a

nominal trajectory, but the actual trajectory is

determined directly from the observations. The

same type of observation may be used in either

navigational technique.

In technique l, one type of observation to be

considered is that of ti_e angIe A subtended at the

space vei_icle by the moon-earth line. By passing
to the limit of infinite distance from either the

eartl_ or moon, corresponding angular measure-
ments of the earth-star or moon-star line can be

made. Referring to the sketch below, A and (I

denote the nominal positions of the spacecraft and

moon at the time of the measurement. Let r_A

be the vector from the earth @ to A and rA¢ the

vector from A to _'. With A denoting the angle

at the space vehicle fr'om the radius to the
earth to the radius to the moon, we have

cos A = - (rcA • FA¢ )t%_ rA¢ (6)

where r_A and rA_ denote magnitudes of the re-

spective vectors l_± and r±_. Treating all

changes as first order differentials, it can be
shown that

/m - in'- ram, n, - (n, • m) j 6_A8A = __ r(9A sin A + rA@ sin A

(7)

where 6r,_A is the radius vector from the observed

position to the nominal position of A with respect

to earth, _], and r_ are, respectively, tile unit vec-

tors from A toward @ and toward _. Hence

r@A = - r@A n, and raf t = rA¢ m. The vector

6r@A is small compared to r@A _. The two in-

dividual vector coefficients of 6r@A in Eq (7) are

vectors in the same piano in which the observation

takes place and normai to the lines of sight to the
earth and to the moon.

A second observation determines position by

taking a stadiametric reading, or measuring tile

diameter of a celestial body. If D is the apparent

diameter of the moon, the apparent angular di-

ameter 2_, is found from

sin (,,) : D/2 rat (8)

with the differential given by

D A • 6tea
e0:

(r±¢) 2 cos (_)

In technique 2, where the actual trajectory is com-

puted without a nominal trajectory, tMs distance

VI - 9



measurement is usually used in conjunction with
other measurements.

A third observation records the time of a

stellar occultation by the moon. Let A and _ be,

respectively, the nominal positions of the space-
craft and the moon at the time of observation, and
let _ be a unit vector at the vehicle in tile direction

of tl_e star occulted by the moon. With Y denoting

tile angle from the star radius to the moon radius

as shown in the second sketch, we have, at the

nominal instant of occultation,

- ri_ = rZX d cos "_ (10)

Treating changes as first order differentials we
obtain

_. _r_¢ =(cos "_)a rA¢ - rag sin Y5_

=(cos Y)_ • a rAQ - rA¢ sin YaY

(11)

The angular deviation aY is computed from a

first order differential of 2 rag sin _/ = D:

)2
5_ = - D r_ • 5 rA_ /2 (rA¢ COS Y (12)

%Furthermore, if V_ and are the respective

inertial velocities of the moon and the spacecraft,
and if 5t is the difference between the observed

and the nominal time of occultation, we have:

a r2t I = \_ a t - (6 r_A + V5 at)

=-ar®A -94 A at (13)

where _aaA is the velocity of the spacecraft rela-

tive to the moon. Then by combining Eqs (II),

(! 2) and ( t 3) we have finally:

• 5 r%A
5t = - (14)

where _ is a unit vector perpendicular to _ in the

plane determined by the lines of sight to the moon

and the star. The procedure could be reversed

by considering star occultations by the earth.

Consider next the technique wherein the angle

between the lines of sight to a star and the edge

of the lunar disc is measured. From the sketch

below,

• 7/,_ = rA_ cos (A*+ _)

where A':-" is the angle to be measured.

total differentials and noting that a r@A
we obtain:

p" ar®z k

rZk¢

(15)

Takin_

= - _ r_,

= 5A':-" + 5_

-- )2
= aA':-'+ D _n • a r@A/2 (rA_ cos "f

= aA#+ tan Y r_ • a r%A /rA¢ (16)

or finally:

p" a r®_
6A ",-"=

r_ cos y

(17)

Sarth

\ °/,./

(space vehicle)

For the measurement of the angle between a

landmark on a planet or lunar surface and a star.

let _ be a unit vector perpendicular to the line of

sight to the landmark and in the plane of measure-

ment. Then if p is the vector position of the

landmark relative to the center of the object,
we have

6A '::=

I%,, +al
Technique 2 does not use perturbations about

a nominal trajectory, but angular measurements

are converted directly to positional data. Optical
instruments in the vehicle are used to establish

bearing lines to point sources in the sky and the

angles between the lines of sight are measured by

a sextant. The conversion to positional informa-

tion is illustrated in the following sketch, where

the plane of the paper represents the plane of one

set of two sextant readings. One bearing is as-
sumed to be taken on the earth and the other

sources, 1 and 2, are either stars, planets, or

the moon. Define a nonrotating plane polar co-

ordinate system (r(9, e@) with origin at the earth,
in which the stars are assumed fixed. The un-

known polar coordinates of the vehicle, (r(9 A ,
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2

e@2

Earth Inertial reference direction, i.e., --_-

0$A), can be expressed in terms of the meas-

ured angles <;i' (_2' 0° < Crl' <;2 < 180° and the

known polar coordinates (r$ I' 0(9 1 ) and (r@ 2'

0@2) of the sources I and 2, respectively, by

use of trigonometry:

f-

r@A = /t'@l r@2 sin (_1 - 051 - _2

+ 0@21" I(r@l)2 sin2o2+ (r@2)2 sin2<; 1

t__

- 2 r@2 r@l sin <;i sin <;2 cos (_i - 0@i

] -1t2- % + 0@2 (18)

r_l sin _2 sin (a I - @®i )

- r@2 sin crI sin (or 2 - 0@2)

tan 0@a = r@2 sm cr I cos (_2 - 0@2) (19)

- crI sin <;2 cos (_i - 0®i)

If source i is a distant star and source 2

represents the moon, tilese formulas simplify

considerably, since r(D2/r_l _O. Then

r_A = r_2

sin (_i - 0®i - (;2 + 0®2)

sm <;2
(20)

and

0_A = _ - aZ + {_1 (21)

Differentials of Eqs (20) and (21) give an esti-

mate of the errors induced in r@A and 0®A by the

measurement errors 6(_ 1 an(i 5cr 2 and source po-
sition errors.

cos (<;1- O@l - _2 + 0®2)

6r®a = (6al + 60@2) r@2 sm <;2

sin (<;1 - 0@1 + 0_92)

- 6a2 r@2 2 2
sin <;

sin (<;1 - 0(_1 - _2 + 052)

+ 6 r(D 2 sin <;2 (22)

60@A = - 6_ 1 + 60_i (23)

The total effect of instrument and/or data er-

rors in Eq (22) can be minimized by proper choice

of sources I and 2. It is quite clear, for instance,

that the cases <;2 = 0, 7r, i.e., cases in which the

moon, vehicle and earth are colinear, should be

avoided. The simultaneous values ¢rI - 0® 1

+ 0@2 = 0, a2 = 90° reduce all errors but those

for 8r@2. Errors in the radial distance r@A,

6r_, therefore determined primarily by the

uncertainty in r@2, the distance of the moon from
the earth.

If Eqs (22) and (23) are divicted by dt, one ob-

tains the time rates-of-change of r®A and 0@a:

sin (orI - 0@i - <;2 + 0@2)

r®A = _s2 sin c_2

cos (<;1 - 0®1 - <;2 + 0@2)
+ (;2 _(_1 + de2 )

sin
<;2L

sin (_1 - 0G1 + 0@2)
- _2 2 (24)J

sin <;2
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The problem of obtaining these derivatives is

discussed on p 21 of Ref. 3.

By combining the available observations and

measurements, other approaches may be found
through this technique. For instance, as an out-

growth of the above method, the position of a

spacecraft in cislunar space may be determined

by two stellar directions and a planetary source.

c. Application of navigational technique 2 to

lunar flight

The choice of stars and celestial bodies is of

some importance if technique 2 is used for naviga-

tion in cislunar space. This aspect is discussed

to some extent and illustrated by one example in

the present subsection.

If the position of three bodies in space is known

at a given time from calculated ephemerides,
triangulation can be used to determine the position

of the spacecraft at that time. In cislunar space
one of the bodies will either be the earth or the

moon, due to their proximity. The sun, any of

the planets, and any of their moons suggest them-
selves for the other two celestial bodies. Un-

fortunately, these bodies cannot be used for lunar

missions because of the inaccuracy developing

from the large interplanetary distances as com-
pared to the relatively small earth-moon distance.
Therefore, the stars must be used.

It can be assumed with excellent accuracy that
the stars are at an infinite distance from the earth-

moon-spacecraft region. Hence the position of the

stars is defined by their direction only and two stars
and the earth or moon are not sufficient to determine

the exact location of the spacecraft, but only a line

of positions. The observation of the angIe between
one star and the prime body (earth or moon) from

the spacecraft specifies its position as being on a

cone with apex at the prime body (earth or moon),

whose center line is directed toward the star, and

whose half-an_lc is _iven by the angle between the
star and primv body. Tile additional observation

of the angh_ bvtwevn another star and the prime
body specifies a second cone. The intersection

between two cones with a common apex is specified

by either one or two straight lines or no intersection

occurs. Itowevcr, since the spacecraft must be

on the surface of both cones simultaneously, the
last case is ruled out. If there is one line of

intersection, which will be denoted "line of posi-

tion, " then the spacecraft is known to be located
somewhere on it. If there are two lines of inter-

section, then a proper choice of stars or a third

angular measurement to get another star may

settle on which line of position the vehicle is on.

Approximate knowledge of the vehicle trajectory,

of course, also determines the line of position.
The location of the space vehicle on this line can

be determined by stadiametric readings, a star

occultation by a second prime body which may be

another planet or the moon, by using another line
of position determined from two stars and the

second prime body, or by tracking from the earth
or moon and subsequent data transmission to the

spacecraft. The choice between these methods is

dependent upon where the vehicle is relative to the
earth or moon at the time.

In this navigation technique, it is important
to know an optimum orientation of the two stars

and the prime body chosen for observation in

order to give the minimum error in the line of

position due to errors in the two angular measure-

ments. Another important question is whether the

more prominent navigation stars can be used for

position determination within an acceptable error,
or if some of the less well-known stars have to be

employed as well.

The geometry is illustrated in the following
sketch. The origin of coordinates is at the center

of the prime body, with Cartesian axes XpypZp

as shown. Vectors _1 and _2 are unit vectors in

the direction of stars 1 and 2, (_s is the angle

between _ 1 and _ 2 which is known quite accurately

to star I to star 2
s 2

to star i I

I

Position

' _ _Yp_rime body i

earth or moon) I
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fromtheephemeris, and the angles a 1 and cr2 are

between the direction to the prime body and stars

1 and 2, respectively, 0 ° < cr 1, a 2 <_ 180 °. The

last two readings, made by lhe crew, establish

the line of position.

The use of this navigation technique is illus-

trated below. The observational accuracy in the

measurement of o 1 and cr 2 is assumed at 6", and

the worst possible combination of these two errors
was used to dcfin_ A p, the angular error in the

line of position. Figure 1 shows the possible

relationships belween cr 1 and a 2 which will result

ill Ap = 0.006 ° or less for a star separation of

cr = 60 ° in the case of the worst possible combi-
s

nation of errors in a 1 and cr2. The line of position

error (maximum) will be 0. 006 ° on the boundary

for the cr 1 and cr2 combinations shown and will de-

crease as the cr 1 and cr 2 combinations move from

the boundaries into the shaded area.

A natural goal is to choose stars which will

keep the effect of reading errors to a minimum,

but still make use of tile more prominent naviga-

tion stars which have proved themselves to be

easily identifiable ow_r several centuries of naval

navigation. With this in mind, the data presented

in Fig. 2 is use<] in making the choice. The shaded

areas shown represent the cr1 and cr2 combinations

which will result in Ap< 0.004 ° for any cr be-- s

tween 60 ° and 90 °. For illustration, it can be

seen that the range encompassed I)2 ' o 1 between

30 ° and 50 ° and cr2 between 70 ° and 80 ° lies

within the shaded area.

This data can be illustrated with an example

using a circumlunar trajectory launched from

Cape Canaveral on 14 June 1968 at 14:14 hr GMT.
A view of the earth, as seen from the spacecraft

three hours after injection into the translunar

trajectory (a good time for first midcourse guid-

ance corrections), is shown in Fig, 3 with the

actual stellar background. Tile right side of tile

earth is ilhminated by the sun, with Alaska and
California appearing on the extreme right. The

principal stellar constellations visible behind
the earth are indicated on the figure. Using the

earth's center as the celestial body, the cr 1 range

(30 ° to 50 °) and cr2 range (70 ° to 80 °) are shown

traced on the celestial sphere. The required

angular displacement between the two stars is
60 ° to 90 ° (shown on tile bottom of the figure).

Thus, star 1 must lie in the band labeled cr 1

range and star 2 in the band labeled 0- 2 range.

The distance between star 1 and star 2 must be

60 ° to 90 ° . inspection of Fig. 3 shows many such

separations between lhe prominent navigation
stars. The spaceccaft 3 hr art<,.,' injection is

typically 50,000 km fFon_ the earth, and an angu-
lar error of _P 0. 006 ° corresponds to a posi-

tion error of 5 km in the line of position.

l.'ig-ures sinlilar to Fig. 3 c;H_. be prepared fol'
various times throughout the lunar mission. In

the case of the illustrated circumlunar trajectory,

figures for a later time will differ from l:ig. 3 by

a decreasing size of the earth and the earth's dis-

placement due to its motion toward the upper h,ft.
When the vehic.le app_'oaehes the moon. the moon

with its star background can bc used for naviga-

tion.

The main advantages of this navigational tceil-

nique are:

(1) Observations can be planned well ahead

of the mission on the ground.

(2) In many cases the same pair of stars

can be used for observations over long

periods of time.

(3) Observational errors can be minimized

by proper choice of stars for navigation.

(4) The time for navigational observations
can be minimized.

Tile last point is important, as two observations

must be made from the spacecraft for determining

the line of Ix)sit|on, and in the very early stages

of lunar flight, the trajectory curves strongly

(see Fig. 1 in Chapter IV), and the direction of

the line of position changes relatively rapidly.

This suggests that this navigational technique

will yield better results farther from the prime

body than in its immediate vicinity, and that it is

not suitable for space vehicles in near-earth or
neat'- moon orbits.

d. Concluding remarks

The problems of navigation are not completely

solved even when position and velocity data are
obtained and decision rules are applied. There

still remains the problem of reducing this data

to useful applications in corrections. For the

case of smoothing and data reduction, reference
can be made to Chapter XI of Ref. 1, while the

differential correction technique is treated in

Chapter V1 of the same reference.

All navigational techniques mentioned have

stringent data-processing requirements. Equa-
tions must be solved rapidly and accurately in

order to support each technique,

The data processing could in principle be

performed by analog computers, digital com-

puters, or digital differential analyzers. Con-

siderations of weight, volume, accuracy, and

programming flexibility, however, prechde the

use of the analog c, omputer alone. For this rea-

son, a navigational system must rely' on digital

data processors. The best compromise would

appear to be a general-purpose digital computer

capable of incremental computation for certain

portions of the navigational problem. Tim mission
duration anticipated for lunar flights requires a

reliability sufficient for at least intermiltent

operation ovec long periods of time with a mini-
mum of maintenance. Titus, the volume, weight,

and secondary power available for the coml)uter

will necessarily be limited.
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2. Tracking a[_d Con_munications for Lunar
Missions

The above discussion of navigation techniques

illustrated the possibility of a vehicle in cislunar"

space performing the I equired navigational tasks

independently of earth-based sensors. However,
it remains extremely unlikely that ground moni-

toring, control, or coordination of a lunar" mission

for' navigational or communication purposes will

be dispensed with. This being the case, tracking

of the spacecraft becomes a requirement for' both
manned and unmanned lunar missions. This sub-

section provides a qualitative description of track-

ing requirements for a typical lunar mission.

Since these requirements vary widely with the

operational concept, a set of practical ground

rules is needed. The following rules, illustra-

tive of a typical lunar' mission, have been estab-

lished for the qualitative discussion of tracking:

(i) Launch is planned from Cape Canaveral,

in anticipation that the majority of lunar

missions will originate there.

(2) The launch azimuth A e is restricted to

between 70 ° and 110 °, which is con-

sidered pr'actical for the existing track-

ing facilities, range safety and launch

tolerance requirements {see Chapter V).

(3) Parking orbits are permissible.

(4) The launch frequency must be twice a

day.

(5) The return or re-entry (if applicable)

is adequately tracked.

Detailed quantitative tracking data for a given set

of ground rules is usually obtained as a by-product

of the trajectory calculation.

The first three ground rules are effectively

illustrated by Figs. 4 and 5, which show typical

ground traces of circumlunar missions launched

from Cape Canaveral for a southerly and northerly

lunar declination. With regard to the fourth

ground rule, a launch frequency of twice a day

can only be realized if injection into the trans-

lunar trajectory is allowed to take place in either

a southerly direction along the Atlantic Missile

Range (AMR) area or in a northerly direction

along the Pacific Missile Range (PMR) area.

Figures 4 and 5 show how the ground trace cor-

responding to a particular lunar trajectory with

a specified launch azimuth is replaced by a ground

swath corresponding to the band of possible launch

azimuths. These ground swaths cover a large part

of AMR and PMR. Since launch tracking facilities

must be provided in these areas, it can be assumed

that re-entry (for circumlunar missions) also

occurs there, In fact, for the ground swaths in

Figs. 4 and 5, re-entry occurs along PMR and

the landings in the western part of the U. S.

Lunar missions are similar to earth orbital

missions in many respects, and therefore, pre-

sent Project Mercury techniques developed for

tracking and communications can readily be used.

As mentioned previously, a logical assumption is
that the overall coordination of the lunar mission

will still bc exercised by a ground control center.
This cunlrol center will receive selected informa-

tion concerning mission progress from tire remote

WTCN (Worldwide Tracking alwJ Communications

Network) stations during all phases of the mission
and it uses this information to coordinate decisions
and to advise and assist the vehicle if manned.

Computational support for this control center is

assmned to be provided by a computations and

communications switching center (CCSC) such as

exists at the Goddard Space Flight Center in

Greenbelt, Maryland.

The CCSC computer determines trajectory

parameters and steering corrections for normal

or aborted missions and predicts the earth or

lunar landing areas if applicable. WTCN stations

exist at AMR and PMR in the Mercury Network,

and as part of the DSIF (Deep Space Instrumenta-
tion Facilities). In addition, facilities are cur-

rently being planned for a primary landing site in

southern Texas. An up-to-date list of the WTCN

tracking facilities, their" locations and a brief

description is given in Chapter' XI of Ref. 1.

In order to obtain an idea of tracking and

communication requirements, a lunar mission

is divided into several phases, as depicted in

Figs. 4 and 5, and the requirements of each flight

phase are briefly discussed.

During the launch phase and under direction

of the ground control center, the CCSC computer

predicts the boost phase trajectory, computes
the look angles for the downrange radars, and

transmits this data to the corresponding WTCN

stations for use in vehicle acquisition. The

vehicle boost phase is for" the most part along the

Project Mercury orbitalmission range. These

facilities are presently adequate to provide con-

tinuous tracking as well as voice and telemetry

communications with the vehicle during the

powered flight periods. Telemetry information

is continuously collected at the ground stations

with sufficient redundancy to minimize ioss of

data and obtain a smoothed trajectory from the

many individual and overdetermining tracking

observations. The ground control center also

affirms the necessity for aborting the mission

and in the case of an abort alerts the recovery

forces for a manned mission. Injection into

the parking orbit always takes place over an
instrumented portion of the AMR, as the ascent

range of " boosters" is small compared with the

length of the AMR.

After parking orbit injection, the spacecraft

waits for the proper' moment to be injected into

the translunar trajectory. For a northerly in-

jection along PMR, this injection area varies
from the vicinity of Australia to Hawaii. The

actual injection point varies with the time of
month and the launch time. To provide continuous

tracking and monitoring dm'ing injection, it is

very likely that additional tracking ships will be

required to supplement the fixed site coverage

along the PMR. The exact number will depend

on launch azimuth variation, on injection require-

ments during the lunar month, on the operational

concept and on the mobility of the tracking ships.

If southerly injection along AMR is specified,
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thesameProjectMercurytrackingran;4e
canbeutilized. However,additionalrecovery
forcesmaybcrequired/'or llla(lne.(l missions in

the event of an abort. It is also possible that

additional trackin R ships may be needed in this

area, especially if the variable launch azimuth

technique is used (see Chapter V).

Once the vehicln is inj{,cted into the transhmar
trail'(tel'y, its _i'oun(] tt'ace has the same general

characteristics as indicated in Figs. 4 and 5. A

very interesting feature of trunslunur and trans-

earth trujcctories is tim( for most of thu mission,

the ,arouud trace wili lit' in a ilurFow band of al-
most constant latitude. This band will shift in

latitucte according to the time of month. In the

above-mentioned figures, the maximum shift is

from +35 ° latitude (northerly decl]m_tion) to -3-) °

latitude (southerly declination) undel' the present

ground rules. This permits an easy ploliin K of

tile _FOtlnd trace on lnups using the Mercator

projection. Another imt)oYtant and interesting
characteristic of translunar and transcarth

trajectorins is Ill(' "doubling back" or Yeversul

of their ground traces. This characteristic is

clcal'ly shown in t<i_4s. 4 and 5 and occurs within

a few hours ufter injection and before l'e-entFy.

The reversal of the ground trace is duu to the

deer(use of the an_ular' velocity of the spa(e

vehicle with respect to the earth as it recedes

from the earth (sea Fig. 1 of Chapter IV), whih"
the rotational rate of lhe earth about its axis

remains constant. This becomes an advunlage

because tile spacecraft will be overhuad for a

few hem's when its angular velocity and the

rotational rate of the earth are nearly the same,

enabling continuous tracking at that time, which

results in the determination of precise train(tory

parameters.

During ti_c translunar an(I transearlh lrajectory

phases, the spacecraft is an(]oF continuous coverage

by DSIF stations. They acquirn End rclain coveraKe

from shoutly after injection into u lunaY trajectory

until it returns to the vicinit) of the earth (for a

circumlunar' trajectory) nxcept foF limes when lhe
vehicle is in the shadow of tilt' moon. I)SIF sta-

tion coverage consists of two-way vet(t, conlnlu(li-

cations, telemetry and tracking4, resulting in a

steady updating of data and practically uninterrupted
monitoring of mission progress. The ground con-

trol center, in turn, can _'efinc the vehicle trajec-

tory infoFmation and so inform a l]lanned vehicle.

Along the translunar ztnd transcaYth trajectories,
the CC;SC compulevs systematically cah ulate and

extrapolate the trujectoF>, and deri_e midcourse
corrections. For a manned mission, these

corrections uFe transmitted to the vellicle over a

voice link for comparison with onboard naviga-

tional data. Tile onl)oard observations may

pYovidc the primary means of navigation, with

ground-derived data pl'ovidin_ l'edundancy, or
vicn-veFsu.

Since ciFcumlunar and other lunar missions

may involve passing behind the moon, and since
the altitude and the pFedicted pericynthion point

may be more at:cm'atcly determined onboard
than on the ground, dala can bc tel(metered to

earth just prior to occultalion of lhe velliele by
tile [lit)on to i)eFmi{ gr'ound computation of the

trajectory so that the I)5IF stalions can tea(quire

the spacecraft when line of sight is re-established.

Likewise, during lunar orbits, vehicle sensors

._ather lunaY dala continuously', store the data

whih' behind the moon, and transmit when visibh'

to I)SIF slalions. On tile transearth trajectory,

I)5IF stations again continuously COVeF the vehicle,

receive any backlog of le]emctry data, and pFovidn

tilt' CCSC computers with trajectory data and voice

l'CpoFts ill case of all Ullrnalllled nlission for conl-

toal,isol], trina] COUl'Se COFl'eetiolls wilt be made

aft(u" lracking data from eaYth tYaeking facilities

refine tile eonlputer pl'ediclions, and gFound-
del'ived data and corrections arc transmitted to the

vehicle.

For the case of a nlann(_d ]unal" landing, con-

tinuous telemetry information from the lunar

investigations and,very likely, television pictures
will be transmitted to earth. Positional data

eo]leeted during the lunar stay will ulh)w the

CCSC conlpuler to provide information _ia I)Slt r

voice link for comparison with tile onboard navi-

gation system. Earth computation may be either

a primary oF a supplementary source of data

during the lunar takeoff and tFansearth trajeelory

injections.

Since there is an obvious operationul advantage

in having all mann(:d lunar missions re-enlering

over the same ground facilities, it is desirable

thut the Fc-entry phase of the trunsnarth flight

oecur either in u north{rl.? direction alon a PMI{ or
in a southnrly direction alontt AMI{. In this case,

AMR an,,t PMt{ tracking stations, the southern

USA tl'ackitlg slalions, and backup ami alternute

landing sites along the AMR and the PMI{ can I)e

used. Thnre should also be provisions for emer-

gency takeoffs or aborts from tile hmar surface
with safe returns to eaFth, which couhi be inade

at any lime. As in the cuse of lunar injeetinn,

ships may bc required along the PMI{ to provide

continuous t_'acking durina re-entry. The ship

locations for any given day are a_/ain determined

by variations of the grounct swath over the lunar

month and the mobility of the tracking ships.

C. MII)COUI{SE GUIDANCE AND ENEI{GY

REQUIf{EMENTS

Sections A of this chapter and of Chapter IX

give the required injection conditions near earth

foF lunal" missions. A trans]unar trajectory in-

jection is specified by particular values of time,

V0' }'0' h0' 90 and iVT L as defined in Scclion A

aboxe. But tbnse nominal conditions cannot bc

achinved exactly because of injection fluidance,

navigation error's, and off-nominal boosler per-
fol'nlance. T]]el'nfol'e 1}1c actual tl'tlnS]/lIILll'

trajeetory, as determined by the _arious naxi_4ation

techniques, in all probability deviates from Hie

desired or' nominal trajeelor), an(t thus may not

satisfy the specific mission requirements. Hence,

it becomes l]eCeSS[tFy tllat once o]' even several
times during the flight to 1he nlOOl], ¢oFYections

be made to re-establish a tra,icctory that satisfies

mission objecti_es. These corrections, moYe

commonly cal]ed 'rl]lidcoul'se _4uidance cot'rections,"

take t}lc form of thrust ilTIpU]SCS that adjust the

actual o1" "errant" trajeetoFy. Navigational ob-

S{,]'\ations and tec]lui(]ut's US w(,ll as trucking4 al](]

con]_11un(I fl'Ol]] eal'th then Sel", t' as in[)uts which,
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together with trajectory calculations, determine

the magnitude and direction of the midcourse

guidance correction.

In a general sense, there are two guidance

concepts which can be used to correct the trans-

lunar trajectory:

(l) Correct the errant trajectory to tile aim

point, which may be the nominal peri-
cynthion point at the nominal pericynthion

time, ol- correct the errant trajectory to

some other pericyntilion point and time

in the case of approach and eircum-
hmar trajectories. For lunar impact

trajectories, the aim point is at a specifteJ

distance in front of the moon, such as

entry into the lunar volume of influence.

This may be regarded as an explicit

guidance scheme.

(2) Correct the errant trajectory back to

the nominal trajectory (in position,

velocity and time) some time prior to

react_ing tile moon. This may be re-

garded as an implicit scheme.

The relative merits of these concepts are

discussed below, together wilh some numerical

data whictl was generated using a restricted three-

body force model with tile moon in a circular
orbit at a radius of 60.32 earth radii except
where noted otherwise.

1. Methods for Determining Midcourse Corrections

The problem of midcourse guidance is to com-

pute the exact space vehicle velocity in an n-body
force model (wMch for most cases of ballistic

flight is sufficiently close to the actual trajectory

as discussed in Section B, Chapter IV) for' speci-

fied guidance objectives. Several approaches

can be used, of which the following four are dis-
cussed below:

(1) A linear differential correction scheme

utilizing a nominal trajectory and pre-
computed trajectory sensitivities which
are assumed to be constant.

(2) A linear differential correction scheme

utilizing trajectory sensitivities com-

puted after launch (either on-board or on

the ground).

(3)

(4)

A corrective trajectory technique which

designs a new trajectory that satisfies

mission specifications by means of the

same method used to design the nominal

trajectory.

A virtual mass technique utilizing two-

body equations.

The first two methods involve tile use of trajectory

sensitivities. They are obtained by linearizing
the nonlinear equations of motion by expanding

in a Taylor series about a point of the trajectory
and neglecting all but the zeroth and first order

term. The coefficients of tim first order term,

whicil are the partial derivatives of trajectory

parameters with respect to some sueil independent

parameters as initial conditions, astronautical

constants or time, are called trajectory sensi-
tivities.

The first and best-known method used for

determining the magnitude and direction of the
midcourse correction is a linear differential

correction scheme. In this scheme, a nominal

translunar trajectory is assumed to satisfy all

mission requirements, which in the case of a

circmnlunar trajectory consist of translunar

inclination iVT L, pericynthion altitude hpL,

inclination and orientation {i m, 01_,I) of the orbit

about the moon, and tile transcarth inclination

iVT E. Due to injection errors, however, the

actual trajectory will be displaced from the

nominal, as shown below.

It is also assumed that the errant trajectory

has been adequately determined by navigation or

tracking before the point A 1 is reached. The

polnt A 1 corresponds to a time t 1, after injection,

when the midcourse correction is applied. Point

A is tile corresponding point on the nominal tra-

jectory at time t 1 with B and B 1 being the points

on the nominal and errant trajectory, respectively,

at a time 12, when it is desired to again "match"

or intersect tim nominal trajectory by a corrective

trajectory. Since the errant trajectory is known

prior to t 1 through tracking and celestial naviga-

tion, the generalized position and velocity coordi-

nates of the errant trajectory qB _tB can be pre-

dicted at time t 2. These coordinates are tt_en

B1(t2)

_/_/////_//] /_// _:_r r ant Trajectory

j. -.-- --Correcti,e Trajectory

*l(tl)
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comparedto thoseofthenominaltrajectoryat
pointB andthedifferencesAqB,A_B are obtained.

A first approach to defining the magnitude and
direction of the midcourse direction involves the

determination of the change in position and veloc-

ity components of the nominal trajectory as a

result of characteristic velocity perturbations

A_]A at point A by means of integrated trajectories

usinga three-body force model. These partialderiva-

tives( 0qB , 0_tB) are thctrajectory sensitivites
\a_A aqA

and are used in the following fashion to define the

midcourse correction A_tiA:

n

AqjB = _ _-_ Aqi A
• =1 8_tiA

___ 8 _tj B .
AqJB = 8 zxqtA j

i=l qiA

j = 1, 2 ..... m

(26)

= 1, 2, ..... m

where j and i are integers denoting the coor-

dinate directions. For the rotating rectangular

coordinate system x R YR ZR of the restricted 3-

body problem discussed in Subsection B-2 of

Chapter III, Eq (26) take the form:

AXRB

8 XRB .
_ 8XRB. /xXRA +- /XYRA

O XRA 8 YRA

O

+ XRB A_R A

_RA

0YRB A_:R A 8YRB •- + _ AYRA
AYRB _ XRA O YRA

-]- __8 YRB. &ZRA

8 ZRA

8 8 ZRB .
AZRB = ZRB. AXRA +--. AYRA (27)

8 XRA 8 YRA

8

+ ZRB. A_RA

8 ZRA

OXRB
In these three equations: the sensitivities

g-ffaA

etc., are known from the ground-computed trajec-

tories; the errors in position at the aim point,

AXRB, etc., are known from the trajectory pre-

diction; and the required midcourse correction

at A (A_RA, A3_RA, A_RA) can be obtained. Ap-

plication of the mideourse correction at A
1

results in a corrective trajectory which arrives

at the aim point B with a velocity qjB + /XqjB

with components (XRB + AXRB' YRB + A2_tgB'

ZRB + A_RB ). This velocity is not necessarily

equal to the nominal trajectory velocity (qj)nominal

If it is desired to match the trajectory in velocity
as wellas position at B, the midcourse correction

at B is given by [qj nominal - (qjB + A_ijB) ]

The above approach tacitly assumes that the

position errors at injection (not shown on the

preceding sketch) are so small that they do not

influence trajectory sensitivities and that the

trajectory sensitivities at A are very nearly

the same as those at A 1 and therefore can be

computed on the ground before the mission.

This assumption has been validated by numerical

integration for expected small errors at injection.

Numerical data embodying the linear differential

correction scheme is presented in the next sub-
section.

The second approach does not make this as-

sumption, and, therefore, sensitivities are com-

puted while in flight for the midcourse correction

point A 1 after the parameters of the errant tra-

jectory have been determined by navigation and

tracking. In both approaches trajectory sensi

tivities are obtained through the generation of

integrated trajectories whose initial conditions

are the slightly perturbed nominal conditions at

t 1. This fact has led to the almost universal

acceptance of the idea that a capability for nu-

merically integrating the n-body equations, or at

least the 3-body equations for lunar trajectories
(Chapter IV), is required from a guidance com-

puter in the space vehicle if the second approach
is used.

A third method which may also be employed,
consists of designing an entirely new corrective
trajectory in the same manner as the nominal

trajectory was designed to satisfy the mlsston

constraints. This new corrective trajectory

intersects the errant trajectory at point A1, and

[t can be computed between injection and time t 2

by use of a perturbative scheme or an iterative

scheme using a combination of n-body trajectories

and the Voice technique. The mideourse eor-

rection is found very easily by determinin_ the

magnitude of ZX Vp and its direction necessary to

reorient the errant velocity vector at A I to the

corrective trajectory velocity vector at the same
point.

A mideourse guidance scheme for cislunar

space has been developed which would alleviate the

demands for computers in the space vehicle (Ref. 6).

The scheme uses modified 2-body trajectories to

simulate n-body velocities by introduction of a
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virtual mass into the earth-moon system which

changes the earth's mass and relocates the bary-

center. The use of the simple and inaccurate 2-

body equations paradoxically permits an opera-

tional flexibility which cannot be attained so easily

by numerically integrated 3-body and n-body

trajectories due to the extreme sensitivity of

trajectories to initial conditions.

The virtual mass technique essentially de-

pends upon computing 2-body trajectories rel-

ative to a force center defined by the combined

earth and virtual mass. The location of this

force center is selected so that the plane, de-

fined by the force center and points A and B,

coincides with the initial n-body trajectory

plane at A (as defined by the radius and velocity
vectors relative to the force center). This

force center is on the earth-moon line and lies

between the center of the earth and the earth-

moon barycenter. It represents an origin which

defines the location for a Keplerian central

mass that properly accounts for the out-of-

plane distortion (drift) of the true trajectory

(Chapter IV, SubsectionA-8). The magnitude

of the mass, or the strength of the central force

field, must be adjusted so that the position and

velocity at tl, corresponding to measurement

from the force, define a trajectory which in

fact passes throu_hthe aim point B. This tech-
nique of "biasing the gravitational constant to

account for the in-plane and out-of-plane dis-

tortion of course means that the flight time will

differ from the actual time and must itself also

be biased.

Thus, by knowing the position and velocity

components of point B at t2 in this biased ref-

erence frame, the velocity vector required at

A l to intercept B can be found by 2-body equa-

tions. This velocity vector is then compared

to the actual velocity vector at A 1 and the di-

rection and magnitude of the midcourse A Vp can

be readily obtained. Preliminary analyses

indicate that this biasing is independent of [VT L.

A compact catalogue of virtual masses (location

and magnitude) and time biases as a function of
the time of the month can be prepared in ad-

vance for use during the mission. The virtual

mass approach is a welcome step toward sim-

plicity in determining guidance corrections and
can be used as the primary method or as a man-

ual backup for lunar missions.

2. Guidance Concepts

a. Guidance concept 1

Guidance concept 1 consists of correcting

the errant trajectory to the nominal pericynthion

point at the nominal pericynthion time--or cor-

recting the errant trajectory to some other

pericynthion point and time.

This concept suggests the use of the peri-

cynthion position at t 2 as an aim point, which

appears desirable since full advantage is taken

of the focusing effect of the moon (Chapter IV,

SubsectionA-8). However, consideration must

be given to the direction of flight at the pert-

cynthion point as well. Discussion of this facet of
the problem is simplified if reference is made to

the geometry of the lunar approach trajectory and

the resulting lunar orbit as shown by the sketch

in SectionA page 4 of this chapter. The sketch
shows the moon, the direction to earth (MEL)

when the spacecraft reaches pericynthion, and
the resultant lunar orbit if the spacecraft were

injected into orbit at pericynthion with a retarding

velocity impulse AV. The orientation of the re-

sultant lunar orbit is specified by the inclination

i m to the moon' s orbital plane and the angle @M

between the earth-moon line and the descending

node. The pericynthion point is specified by tiM'

which is the orbital central angle measured posi-

tively toward the north from the descending node
of the lunar orbit.

The nominal translunar trajectory will have a

specific i m, @M' and tiM associated with it. A

single midcourse correction to an errant trajectory

(a t I = 3 hr after injection, for instance) cannot

result in arrival at the moon with the same i
m'

0 M, and _M" Any single impulse technique can

be expected to fix one of the quantities, but not

all three. The guidance concept under considera-

tion fixes the pericynthion point. The resultant

i m and @M cannot be matched without the addition

of another velocity impulse at pericynthion. Yet,

the correct i m and OM is necessary. If the mis-

sion is circumlunar, an error in any of the re

quired characteristics will result in an error in

both vacuum perigee altitude and transearth tra-

jectory inclination iVT E at vacuum perigee.

The total mission flight time will also be affected.
If it is a lunar orbit mission, the desired linear

orbit would not be attained. This has more serious

implications than the immediate situation mentioned.
If it were a lunar landing mission, the resultant

orbit would not go over the desired landing site.
For illustrative purposes a completely ballistic

circumlunar trajectory with iVT L = 63.3 °, hpL =

463 km andbpE= 45.720 km is used.

The injection velocity errors are based on
typical standard deviations (la values) as given

here in x v, Yv and z v coordinates, respectively,

where z is in the direction of the local vertical,
v

x along the local horizontal in the flight direc -
v

tion, and Yv completes the right-handed Cartesian

coordinate system by defining a lateral direction

normal to the trajectory plane.

= 0.46 m/sec
x

a = 0.34 m/sec
Y

a = 2.4 m/sec
Z

These errors are used for the remainder of

the discussion and are combined in various ways

to yield a total velocity error, at injection, with
a 99% probability.
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In this example tile total injection velocity

errors in the rotating trajectory coordinate

system xRY R z R become

_x R = 1. 18 nn/sec

AyR" = 0 nn/sec

Az R = 5.23 nn/see

whicln are the same as those u._ed in the third

sketch below.

Trajectory sensitivities are determined for

t 1 = 3 hr and the first adjustment method is used

to calculate that a mideourse correction AV =
P

7.3 nn/see is required to correct to tile nominal

perieynt]_ion point and time. The second cor-
rection, to reorient the velocity vector along

the nominal trajectory, was AV = 13.7 m/sec
v

at pericynthion, and the total required- \VTO T =

21.(1 m/see.

A feature of this concept which is somewhat

expensive in fuel is the reorientalion of the velo-

city vector to the desired direction at the aim

point. This disadvantage can be eliminated, or
almost eliminated, by changing the aim point to

a new pericynthion position.

large amount of data has been assembled

in the present chapter and Chapter IX showing
the relationships between the lunar orbit orien-

tation (0 M and i m) and pericynthion point posi-

tion _M o The data are presented as a function

of tVT L for approach trajectories (Chapter IX)

and as a function of iVT E and iVT L for circum-

lunar trajectories which return to a specific
vacuum perigee (Section ,4). A curve of required

e M versus inn can be determined as demonstrated

in the sample nnission I of Chapter XI (also See

tion A of Chapter XI). This data then fixes the

iVT E for circumlunar flights and consequently

/3 M (see Section D Chapter XI). The required

0 M and inn curve can be obtained directly if a

constant iVT E is desired. Trajectories that

do not return to a specific and safe vacuum

perigee (Chapter IX) have a pericynthion post-
lion that varies with translunar flight time for

a given i m-0 M relationship. Thus, the corrected

trajectory can be aimed at a new pericynthion

point that satisfies the inn- 0 M conditions. It

must be remembered that, in general, a velocity

correction is still required at this point.

This technique was used to correct the errant

trajectory above. Again, midcourse corrections

at 3 hr after injection were made along the ve-

locity vector _®A, normal to the velocity vector

in the plane of r®A and _®a (relative to earth)

and a correction normal to this trajectory plane.

These corrections will be referred to as /xV@>,,

/', h, and /"i, respectively.

It was found that AV@/,,changed hpI,efficientlv,•

but not i m _r 0 M. On the other hand, ±'_ changed

inn and 0 M, but did not changehp[•effectivelv.. The

A[ correction changed all of the pericynthion con-

ditions, but not always in the correct directions

or proportions. Therefore, a connbination of

AV®Aand ,',' corrections was used in the mid

course maneuver, plus another correction at the

new pericynthion point. The total velocity impulse

required _ VTO T was approximately 10.7 m/see,

compared to the 21.0 m/see correction of the

lirst approach above. Percentage-'wise the dif

ferences in the two tectmiques may be large at

times but in magnitude the differences may be

wholly acceptable.

However, some difficulty may be encountered

in determining the required midcourse maneuver.

It has been shown analytically (Ref. 7) that the

lunar miss distance or pericynthion is a linear

function of the injection errors for an infinitesimal
lunar mass (massless moon assumption). How-

ever, if the finite lunar mass is considered (patched

conic or restricted 3-body technique), then the

miss distance is related quadratically to the in-

jection errors. It follows that for the linear tra-

jectory sensitivities generated for conditions near

the moon, a certain amount of cross coupling in
the sensitivities can be expected. This can be

handled either by takin_ second-order terms in

the Taylor series expansion or by repeated (and

hopefully convergent) iteration by improved guesses
at sensitivities. This cross coupling has indeed

been noted in the above numerical example. The

injection errors are large enough that the required
nnidcourse correction was not readily obtained,

in fact, a minimum of three iterations were re

quired to obtain a satisfactory nnidcourse correc-
tion at the 3-hr point.

The following table shows a comparison be-
tween the linear differential correction scheme

(methods one and two in Subsection C-1) and the

third method for determining nnidcourse correc-
tions in Subsection C-1, wherein a corrective

trajectory is designed by use of the Voicu teeh-

ntque (Chapter IV, Section C) and n-body force

model trajectory calculations in conjunction deter-

mining the nnidcourse corrections. The trajectory
under consideration is a cireunnlunar trajectory

with the desired mission requirements noted in

Table 3. The errant trajectory fulfills all the

requirements satisfactorily except for the return

vacuum perigee altitude. A hypothetical case
is taken for which it is assumed that the mid

course correction takes place at the injection

point. When the linear differential correction
method without iterations was used, the obtained

return perigee altitude was completely unaccept-

able and the pericynthion altitude was less sat

isfaetory. However, use of the Voice technique

and n-body trajectory calculations for obtaining
the necessary correction, the resultant return

perigee altitude becomes acceptable and all ottner

mission parameters remain essentially the same.

One trajectory can of course not be used as the
basis of a final conclusion. However, together

witln the results of Egorov for impact trajectories

(Ref. 7), the third method seems superior to the
first two for the case of circumlunar trajectories,
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"FABLE 3

Comparison of Various Midcourse Guidanee Schemes

for a Typical Circumlunar Trajectory

Trajectory Variabte

V 0 (injection velocity) (m/sec)

"/0 (injection flight angle) (°)

h 0 (injection altitude) (kin)

'_0 (injection position) (°)

iVE (translunar inclination)(°)

iVTEQ (transearth inclination)(°)

tp (time to pericynthion) (hr)

T (total mission time) (hr)

hpL (pericynthion altitude) (km)

freturn vacuumhp E "perigee altitude" (km)

_* (moon lead angle) (°)

Mission

Requirements

2. 668174

182.88

29.24953

35.206

185.0148

36.8061

Errant Trajector

(n-body)

10,963.736

2.(;68174

182.88

13.9936314

29.384214

35.098407

73.734375

147.101562

185.2000

215.4936

37.4512316

Corrected

Trajectory

(linear diff. correct

in body)

10,963.756

2.668174

182.88

13.1875706

29.38:3332

35.566

73.734

150

173.1620

-1402.080

38.038309

Corrected

Trajectory
(iteration with

Vote e )

(n -body)

10,963.786

2.668174

182.88

13.1986777

29.382176

35.386665

73.64034

147.07816

186.8668

37.5

38.0294507

when the trajectory passes from a earth-domi-

nated gravitational field to a moon-dominated

gravitational field and back again. It should be

noted that the return vacuum perigee, i.e.,

when the vehicle passes through all three gravi-

tational regions, is hardest to obtain by a iinear
differential correction scheme.

b. Guidance concept 2

Guidance concept 2 consists of correcting

the errant trajectory baek to the nominal traj-
jectory (in position, velocity and time) some-

time prior to reaching the moon (Fief. 8).

Two approaches may also be used in imple-

menting this concept with the linear differentiaI
correction scheme. Either the midcourse cor-

rection can be made to return to the nominal

trajectory as soon as possible (a truly explicit

scheme) or to return to the nominal trajectory

at some prearranged point and time. Ideally,
either of these midcourse corrections is made

in two parts. The first, at t 1, is a velocity

impulse which will return the spacecraft to the

nominal trajectory at a specific point and time

t 2. The second correction is made at t 2,

to reorient the spacecraft's velocity vector

along the nominal velocity vector. The velocity

impulses required are referred to as AV the
p'

first impulse to correct position, and ZXV v, the

second impulse to realign the spacecraft tra-

jectory aiong the nominaI trajectory.

The graphical data shown below is presented

in a manner that allows a quick understanding

of the orders of magnitude involved and of the
efficiency of this concept.

ro k

o

AVToT_- AV ÷ AV
p v

....... AV
P

AV
v

tl= 3 hr tl- 5 hr

,

' I
10 20 30 40 50 60 7C 80

Arrival Time At Aim Point, t2 (hr)

VI-20



Forthis example,thenominalcircumlunar
trajectoryhashpL= 1852kmandaniVTL =9.1°
at injection. Theinjectionerror is onlyin
velocity. Thiserror wasappliedinarbitrary
directions,butonlyonesetoftypicaldatais
presented.AVp,AVvandtheir sumAVTOT per
velocityerror areshownasafunctionofarrival
timet2 onthenominaltrajectory. Thecurves
areshownfor themidcoursecorrectionbeing
madeatt I =3 hr andat t I =5 hr afterinjection.

For theeffectof iVTL at injection on the

mideourse requirements, several trajectories

have been investigated. All nominaltrajectories

are circumlunar, returning ballistically to a

vacuum perigee of hpL = 45.7 km, with hpL =

463 kin. The iVT L of the trajectories is varied

from 30 ° to 63.3 ° . The effect of iVT L on mid-

course requirements is shown below. The error
conditions noted are for the most extreme cases

encountered, and the coordinate system is that

previously presented for the laerrors. Only

AVTo T is shown, and the initial midcourse cot-

rectionAV has been assumed at t 1 = 3 hr.
P

This example typifies the differences between

the first and second concepts. The first co,--

rection, AVp, decreases as the aim point gets

closer to pericynthion. The second correction,

AV v, increases as the moon is approached, a

trend which becomes more severe with increasing

values of iVT L. In comparison, this concept re-

quires aAVTo T = 7.9 m/sec which [s 25 to 60%

less than required in the first concept.

The obvious points of the above figures are
that:

(1) Delay in the mideourse correction re-

suits in increased propulsion require-
ments.

(2) The required correction is greater when

the inclination of the translunar trajectory

plane (at injection) is increased.

(3) For this concept, the best aim point

on the nominal trajectory is approximately

75, 000 km before reaching the moon.

Finally, most midcourse adjustment methods

are readily adaptable to this guidance concept.

e. Midcourse guidance accuracy requirements

Several questions arise regarding mideourse

guidance:

(i)

(2)

How accurate must be the navigational

position and velocity determinations or

the tracking of the vehicle from the
earth and moon?

How accurately can the errant and cor-

rective trajectories be predicted to the

aim point ?

ca
®
01

v

E_
0
E_

>

<a

ca

"e
v

E-4

!,

(3) How accurately must the magnitude and
orientation of the corrective velocity

impulse be controlIed in order to achieve

the desired corrective trajectory?

AiR= .70 m/see

A#R= .91 m/see

A£R=6.20 m/sec

I0 I

• = • I

iv L=3
Ig

I

I

I

#o 3b go 56 _o 76 8b

Arrival at Aim, t 2 (hr)

lOl

8

6

4.

AIR= 1.18 m/see

A yR = 0

A£R= 5.23 m/see

' = •

iVTL= 300 S

O

I I I I I I0 30 40 50 60 70 80

Arrival at Aim, t 2 (hr)

Again, since numerical values of position deter-

mination differ widely with the particular track-

ing and navigational equipment used, since the

prediction depends on the force model and con-

stants used in the trajectory simulation, and since

the corrective velocity impulse depends on rocket

engine characteristics, no quantitative results

will be given.

A brief account of observational accuracies

and some results of on_ navigational technique

have been presented in Subsection B-1. Tracking

by electronic means depends on the type of
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measurementmadebytheequipment,i.e., range,
azimuth,elevation,photographyagainstthestar
background,rangemeasurementsfromseveral
stations,etc., andontheaccuracyof eachin-
dividualtrackingmeasurement.Usually,many
measurementsaretaken,thusoverdetermining
thetrajectoryof thevehicle. Therandomer-
rors canthenbeminimizedbysomesmoothing
techniquewhichresultsin atrajectorywhichis
betterthanonederivedfrom theminimumnumber
of trackingobservations.Equipmentbiaserrors,
stationlocationerrors andatmosphericrefraction
errors (if thetrackingis fromearth)cannotbe
removedin this fashionbutmaybeisolatedby
manyobservationswiththetrackingequipmentin
question.A morequantitativediscussionof
trackingequipmentandsmoothingtechniquescan
befoundin Chapter XI of Ref. 1.

The problems in trajectory simulation have

been discussed in Section B of Chapter IV, and

numerical comparisons between results obtained

by use of several simple force models are

scattered throughout the Handbook, most recently

in Section A-2 of the present chapter.

The control of the corrective velocity im-

pulsesZXV or AV depends on the thrust level
p v

of the rocket motor used for midcourse guid-

ante, the burning time required to achieve the

desired ZXVp or AV v, the accuracy of the ac-

celerometers which control the thrust as well
as the roundoff and truncation errors of the com-

puter integrating the thrust acceleration to ob-

tain AVp or AV v. These aspects have been dis-

cussed quantitatively in Chapters VI and XII of

Ref. 1, and onIy a very brief description will

be given here. The magnitude of the velocity

impulse can be controlled by two different

methods, with representative errors in each

technique.

(I) Monitor propulsive inputs, a technique

which attempts to control each of the

propulsive parameters contributing to

the velocity increment. The errors

depend on the rocket engine control sys-

tem and engine and fuel characteristics.

Typical errors are:

Burning time At b = 0. 030 see

Mass flow rate AMf = 0. 005 Mf

Specific ira- AI = 0. 004 I
pulse sp sp

Initial mass ZXM 0 = 0

(2) Monitor the velocity increment directly,

a technique reqmrmg accelerometers and
integrating computers. This system is

more appropriate for the small mid-

course corrections to be made; it has

a typical error of A(AV) = i0 -4 AV in

the increment itself and At b = 0.030 sec
in shutdown time.

The individual midcourse velocity impulse can

be controlled to within 0.01 to 0.1 m/sec by a

conventional midcourse propulsion system. More

accurate control is not necessary, but could be

achieved by unconventional propulsion systems.

The directional control of AV and AV is
p v

not as critical since these velocity impulses are

very small compared to the vehicle velocity

vector VZX. Directional control of the thrust

vector to within 1 to 5 ° from the nominal is

considered sufficient in most cases, which can

be achieved by a rudimentary attitude control

system based on navigational observations.

If the navigational observations for position

determination are in error, and the trajectory

has not been determined or predicted accurately
enough, or the midcourse velocity correction is

in error, multiple midcourse corrections are

required. These are not discussed here. How-
ever, additional data on nominal transearth

midcourse guidance requirements will be given

in Section B of Chapter IX.

D. TRANSLUNAR ABORT

In the translunar trajectory phase of a lunar
mission, the vehicle is assumed to be in a

ballistic two-body trajectory in the general di-
rection of the moon. If a malfunction occurs

on an unmanned mission which jeopardizes it
or causes a mission failure, usually little action

will be taken. However, if an emergency such
as a solar flare or a meteoritic penetration oc-

curs on a manned mission, it is abandoned and

a turnaround or abort maneuver is performed to
return the crew safely back to earth. This abort

maneuver uses rocket burning to establish an

abort trajectory with a prescribed vacuum

perigee altitude and re-entry angle, within the
safe re-entry corridor of the spacecraft. The

essential parameters in such a maneuver are the

propulsion requirements, the point along the

translunar trajectory at which the abort is

executed, and the eccentricity of the translunar
trajectory. These parameters affect very

strongly the time to return to earth and the pos-

sibility of landing at a preselected site.

In this section, requirements for abort

maneuvers which result in the safe recovery of
the vehicle will be presented. A simple method

of obtaining acceptable return trajectories will
be given in the first part. The probIem of reach-

ing preselected landing sites will then be dis-

cussed together with a consideration of aborts
that occur both in and out of the plane of the ini-

tial trajectory. Finally, the requirements for

establishing abort way-stations along the nominal
trajectory will be discussed.

Only abort maneuvers initiated after injection

and before the vehicle reaches a distance of ap-

proximately 200, 000 km from earth will be con-

sidered. Beyond this distance, the effect of the

moon begins to play a major role in determining

the translunar trajectory, and the two-body trajec-

tory assumption will no longer be accurate enough.

1. Abort to the Vicinity of Earth

In order to obtain a general idea of the re-

quirements of the turnaround problem, several

assumptions are made which simplify the calcu-
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lationsbutallowtilevariousparametersof
interestto befoundwithsufficientaccuracy.
Theseassumptionsare:

(1) Themodelusedfor transhmarandabort
trajectoriesis arestrictedtwo-body
model,i.e., avehicieof negligible
massmovingin thecentralforcefield
of asphericalearth. Thisallowsthe
useof constantorbitalelementsfor the
descriptionof thesetrajectories.

(2) Theabortmaneuverconsistsof a
singlevelocityimpulse,AV A.

(3) The translunar and abort trajectories

are confocal and have a perigee radius

of 1 ER (earth radius)°

(4) Radiation belts are ignored.

The first concern is to determine AV A re-

quirements for abort together with the time to
return to earth when performing abort maneuvers.

Before this can be done, the velocity V T and

flight path angle "_T must be known for any point

along any translunar trajectory. In a system of
units which measures the distance from the

earth R in earth radii, and/x _ = 1 is the gravi-

tational constant of the earth, the resulting

normalized velocity is expressible as:

v ]
where e T is the orbital eccentricity of the trans-

lunar trajectory.

The flight path angle "/, which is measured

from the local horizontal to the velocity vector,

may be found by use of the following equation:

-1 F(l+eT )/R ]
1/2

= cos L 2- R (1- eT) j (29)

Next. the limit of allowable eccentricities for

the abort trajectories is required. For one con-
stant and continuous band, an abort eccentricity

e A = 1 is arbitrarily selected. Actuaily, this

may be interpreted as a design limit and will be
referred to as such. For a given distance from

earth and a required perigee altitude, the mini-

mum e A obtainable is realized when the semi-

major axis a A is as small as possible. This re-

quires that the radius at abort, R A, is the apogee,

and, by assumption 3, above,

HA+ i

a A - g----. (30)

The resulting equation for the minimum al-

lowable eccentricity is:

(R A - 1)

(eA)min = (R A + 1) (31)

Figure 6 shows an envelope of allowable re-
turn eccentricities as a function of distance from

the earth. There is actually no real upper limit

above e A = 1 provided that a proper negative

abort flight path angle 5' A is achieved.

Knowing the orbital elements of the transhmar

trajectory and the required abort eccentricity,
both the transhmar trajectory conditions prior

to abort (V T, "6i,) and immediately after the

maneuver (V A, "_A ) are easily found.

The time to return to earth along any of the

allowable orbits is comt)uted with the classic

two-body time equations of Ref. 1 and the results

are shown in Fig. 7. This plot is true regardless

of the eccentricity, e T, of the transhmar trajec-

tory and shows the return time as a function of

the allowable e A for any R A.

The time to return may be altered for a given

AV A if the abort maneuver is such that the abort

trajectory plane is differem from tbe translunar

plane. This is referred to as a"change in

azimuth" and the consequences of such a
maneuver are described here.

The change in azimuth A A is the angle between

the original translunar trajectory plane defined by

RT and _T or the XvY v plane and the trajectory

plane defined by R'A and _A"

Taking the dot product of the initial and final

velocities, V T'V A, the angle ( between _T and

_A is obtained as

= cos sin "_T sin "fA + cos "iT cos "fACOS_ .

Thus, for a given "iT and "fA' _ increases with
AAo

From the law of cosines,

(AVA)2 = VT2 + VA2 _ 2VTV A cos E

it is seen that as t increases, the required

velocity impulse also increases for a given V T

and V A. Therefore, for given initial conditions

of V T and V A and a specific time to return, any

change in heading will result in an increase in the

required maneuvering impulse AV A"

Figure 8 shows the AV A needed to perforrn

the abort maneuver at various distances from

the earth without changes in heading. A(+ "_A_

in Figs. 7 and 8 indicates the region where.

after the abort maneuver, the flight path angle is

positive, and (- 2A_ is the region where the final

flight path angle after abort is negative. For

positive values of YA' the spacecraft must pass
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through the apogee of the abort trajectory prior

to returning to earth and perigee, while for the

latter case, the spacecraft returns directly to

the perigee of the abort trajectory. However,

for obtaining a specific perigee latitude and

longitude it may be more efficient, timewise, to

maneuver out of the initial trajectory plane.

This is demonstrated later in the section. The

data given in Fig. 8 applies for e T = i. 0. For

e T < 1.0 the _V A required to return to earth

in a given time also decreases. In fact, the

± V A is reduced by i0 to 15% if e T is lowered

from 1.0 to 0.98.

2. Abort to Preselected Landing Sites

Even during emergency situations, the prob-

lems of recovery might be reduced by the use of

preselected landing sites. The results of per-
forming in-plane abort maneuvers that return

to a given perigee longitude will be presented in

this section. They were obtained by using classi-
cal two-body results and by assuming that the abort

maneuver is characterized by an impulsive change

of velocity _ V A at a distance R A (in earth radii)

from earth.

The nominal translunar trajectory prior to

the abort maneuver used as an example is ellipti-

cal with injection at perigee h 0 = 45. 720 kin,

V 0 = 11,055.1 m/sec, correspondingtoan ec-

centricity e T = 0. 9668. This ellipse has an apogee

radius approximately equal to the moon,s average
orbital radius of about 60 ER and an inclination

iVE = 36.5 ° to the equator.

Figure 9 presents the necessary information

to estimate return perigee longitudes for various

values of _ V A and R A. The right-hand side of

Fig. 9 shows the return time (time from the abort

maneuver to return perigee which is also at

hpE = 45. 720 kin) as a function of R A and ZkVA.

The left-hand side of the graph converts the re-

turn time into the longitude of abort trajectory

perigee relative to the translunar trajectory

(injection) perigee with the assumption that the

latitude of the translunar trajectory perigee is

equal to the latitude of the abort trajectory

perigee. This assumption results in the re-

moval of orbital inclination from the problem.

However, the inclination and injection perigee

latitude enter indirectly when the return perigee

longitude is chosen. For example, assume that

the injection latitude is 16.5 ° S and it is desired

to land in Australia after an abort from a south-

easterly launch from Cape Canaveral. This

launch azimuth results in an approach to Australia

from the northwest. Therefore, return perigee

longitudes somewhat to the west of Australia are

desirable.

Figures I0 and ii have been obtained from

Fig. 5 for three typical situations. Figure l0

shows _ V A and return time for abort maneuvers

at various values of R A with the requirement of

landing in Australia. The injection perigee longi-
tude and latitude are taken as 8.8 ° W and 16.5 ° S,

which is representative for lunar launches from

Cape Canaveral. The longitudes used for land-

ings in Australia reflect an approach from the

northwest. Figure i0 denotes the number of

revolutions the earth has made (i. e., the number

of sidereal days) before re-entry takes place,

and the shaded band represents the width of the
Australian continent.

Figure II presents the same information for

landing in the United States and off the west

coast. The injection perigee is assumed to be
directly over Edwards Air Force Base which is

representative of a lunar launch from Cape

Canaveral on a trajectory inclination to the earth,s

equator of iVE = 35 ° with a parking orbit prior to

injection. The selection of return perigee longi-

tude depends on the aerodynamic maneuvering

capability of the lifting body re-entry vehicle,

which is nearly tangent to the landing site latitude.
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Therefore, four possible return perigee longi-

tudes have been shown in Fig. II. Perigee at 170 ° E

longitude is representative of a return to Edwards

Air Force Base with 7200 km of re-entry glide

range. The other extreme would be a return

perigee longitude at the east coast of the United

States. This would represent the minimum re-

entry that could still remain within the boundaries

of the United States. The much wider selection

of return times compared to the Australian land-

ings is apparent. This is due primarily to the

fact that re-entry longitudinal maneuverability

can be used to extend the choice of return perigee

longitudes.

Subsection D-1 mentioned abort maneuvers

that result in an abort trajectory out of the trans-

lunar trajectory plane. The discussion below

demonstrates the feasibility of performing an
abort maneuver with a change in azimuth A A

resulting in reduced return flight times to reach

a specific landing site.

In order to obtain representative data, a

typical translunar trajectory was selected from
which abort maneuvers were conducted in and

out of the translunar plane at various distances

from earth. The landing site is Edwards Air

Force Base and the translunar trajectory is

characterized by the following injection conditions:

Velocity V 0 10,907 m/see

Altitude h 0 231. 953 kdn

Flight Path Angle _0 3°

Longitude k 0 165 ° west

Latitude _0 26.35 ° north

Orbital Inclination iVE 35 °

Orbital Eccentricity e T 0. 9728

Results are presented in Fig. 12 which give
the time-to-return from an abort as a function of

R A and _A for abort and transiunar trajectories.

The translunar (nominal) trajectory represents
a no-maneuver condition and just gives the time

to complete a circumlunar mission as a function

of R on the translunar portion of the trajectory.
The time-to-return from an abort maneuver de-

pends on whether one particular landing site is

desired, or a number of sites are available or

simple earth return is sufficient. In the last

case, it has been shown that the least A VA is

realized when the abort maneuver occurs in the

nominal translunar trajectory plane. Figure 12

also gives the absolute minimum return time to

earth for the values (z_ VA) max = 549 m/see

and (_ VA)ma x = 1829 m/see illustrating that

simple earth return requires less time than

return to a specific site.

If return to a particular landing site such

as Edwards Air Force Base is desired, then

the arrival must be timed correctly because of

the earth,s rotation. The step functions on

Fig. 9 represent the minimum time to return to
Edwards Air Force Base for variable values of

VA < (_ VA) max and show the timing problem

for two values of (AV A) max for abort trajectories

with AA = 0 o, AA = 10 o and AA = 20 °" The return

times for out-of-plane abort to Edwards Air Force

Base are in certain cases less than for in-plane

aborts. The intersections of the out-of-plane step
functions with the absolute minimum time curves

in Fig. 12 denote these cases, and near these

intersections the planar change ZXA should be de-

creased for increasing R A to maintain minimum

return times. As these intersections on the
_T . H

return-to-Edwards curves are approached, an

increasingly larger A VA is required and at the

point of intersection the total available A VA or

(A VA ) max is used for abort.

The data in Fig. 12 indicates that definite

benefits may be gained in performing abort nm-

neuvers out of the translunar trajectory plane

when landing at a specific site is required. I%e-

ductions in time-to-return of up to 5 hr over the
in-plane returns can be realized for Edwards

Air Force Base landings. If several landing
sites are available the time to return could be

reduced further. The restriction imposed by

available tracking facilities has so far been ignored
(see Subsection B-2). Since abort maneuvers out

of the nominal trajectory plane change the abort

trajectory inclination, the capability to track the

vehicle during re-entry from existing facilities
must be re-examined.

A point not illustrated in Fig. 12 is that the
total time froln the translunar abort decision to

re-entry, t R, for landing at a particular site is the

same for a large range of ±V A up to (AVA) max'

since for a successful abort the landing site which
rotates with the earth nmst be near the abort tra-

jectory plane. It does not matter whether the en-

tire t R is spent in an abort trajectory with a lower

zx VA or whether part of it is used in reaching

a point on the translunar trajectory where

(/x VA ) max is used for the abort maneuver and

the rest on the abort trajectory. This character-
istic of translunar aborts to a given landing site

suggests the selection of specific points or "abort

way-stations" along the translunar trajectory for

abort maneuvers, from which the vehicle can

acquire the landing site with a fixed value of & V A.

"Abort way-stations" allow the use of abort tra-

jectories which can be precomputed on the ground

prior to the lunar mission. Itowever, they rep-
resent the least efficient abort maneuver from a

standpoint of fuel requirements (i.e., the maxi-

mum value of /_V A is used for a given time to

return). More material on way-stations is pre-
sented in the next subsection.

3. Abort Way-Stations

A method for obtaining abort way-stations, or

points on the nominal translunar trajectory from

which precomputed abort trajectories character-

ized with a fixed value of _V A can be used, has

been presented by Kelly and Adornato (Ref. _).

The method as described briefly in the present
subsection is a modification of the one used in

Ref. 9.
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The following sketch illustrates the geometry

of translunar abort with return to a specific

landing site.

Assume a restricted two-body force model

for the translunar and abort trajectories, and

assume that they are in a common plane (AA = 0°).

If we include the re-entry trajectory into the cal-

culation, then an abort way-station as defined

above must satisfy the following four constraints:

(1) Abort trajectories from the way-station

must have acceptable flight path angles

YR at re-entry:

Ymin _" "oR _" _'-- -- max
(32)

(2) Referring to the previous sketch, let 0

denote the vehicle and C the position of

the landing site at translunar injection,

let A denote the abort maneuver, B the

location of the vehicle and landing site

at re-entry and L, f the coinciding

positions of the landing site and space

vehicle, respectively, at vehicle touch-

down. In addition, a double subscript

notation is introduced for time, i.e.,

is the time for the space vehicle
2t0 -A

to travel from translunar injection to

abort and A tB_ L the time for the landing

site to rotate with the earth from B to

L. With this notation, the first abort

way-station imposes the following time

constraint.

±t0 -A + /_tA- B + ±tB-f =

_tc -B + _tB - L (33)

However, since the landing site rotates

with the earth, it will be in the trajec-

tory plane at the same location L once
in each sidereal day (1 sidereal day =

86164.1 sec = 23 h 56 m 4.Sl) as long

as the latitude of the landing site is

less than the trajectory inclination.

Thus, further abort way-stations are

characterized by

At 0_A + Z,t A_B +AtB- f

/Xtc_ B+ /_tB_ L +(n- 1) 86164. 1 sec
(34)

Circumlunar

Trajectory

_-Abor t

Trajectory _A
I

\

Location of--

Landing Site

At Injection

njection_Point

;L
T°uchd°wn) t

of

,cation of Landing

Site at Time of

Reentry
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where n = i, 2 .... is the number of

the abort way-stations or sidereal days

or complete rotations of the earth from

injection. As long as the latitude of the

landing site is less than the trajectory

inclination, the site will intersect the

translunar trajectory plane also at L'

and a second set of abort way-stations

can be computed for this site.

(3) Let @A be the range angle from injection

to abort (or true anomaly since injection

occurs at perigee), _R the range angle

from abort to re-entry, and _R the

required longitudinal maneuverability of
the vehicle from re-entry. The total

range angle _0 from injection to the

point L of intersection of the landing

site with the trajectory plane must sat-

is fy

_0 = _A + @R + ±_R (35)

The range angle ±_R is constrained by

the longitudinal maneuvering capability

of the vehicle, i.e.,

(ZX_R) rain max

(36)

For preliminary calculations the re-entry por-

tion of the flight can be neglected in comparison

with the translunar and abort trajectories. Then

AtB-f = AIB-L = 0, D_ R = 0, and the restricted

two-body force model results compiled in Chapter

III of Ref. 1 can be used to determine abort way-

stations for certain translunar abort trajectory

characteristics and landing sites. If available,

the re-entry trajectory parameters _tB_ f and

A} R can be obtained for certain space vehicle

characteristics and added to the restricted two-

body results to obtain more realistic abort way-
stations.

A typical graph for determining abort way-

stations has been given in Fig. 13. The dashed

lines represent the required time from injection

to when the landing site intersects the trajectory

plane at L or (At 0_A + AtA-B + /_tB-f) =

constant for the first, second and third day. The

curve of minimum time to re-enter corresponds

to a change in flight path angle only by the abort

maneuver, while the maximum time to re-enter

corresponds to a change in velocity only with no

change in flight path angle at abort. Both curves

are for the same ±V A = 1529 m/see. The inter-

sections of the minimum time to re-enter curve

with the dashed line represent abort way-stations

and are denoted by dots on Fig. 13.

The abort way-stations on Fig. 13 correspond
to the intersection of the &A = 0 °step function

with the curve labeled "absolute minimum time

to return to earth (AVA) "in Fig. 12. It is
max

obvious that Fig. 12 presents much more informa-

tion than Fig. 13--it gives abort way-stations for
_A = 0 °, aA = 10 °, and __A = 20 ° which are the

intersections of the step functions with the (/xV A)
max

curves. In addition, lower values of kV A can be

obtained at a glance from Fig. 12. The near-

horizontal part of the two-step function on Fig.

12 can be connected to yield a four-parameter

set of curves where _V A and &A are presented in

the field of the graph together with the nominal

trajectory (zxV A = 0), and R A and time-to-return

are the abscissa and ordinate, respectively. In

this fashion, the maximum abort maneuver infor-

mation can be presented on a single graph.

In practical design of abort trajectories (and

way-stations), a set of graphs similar to Fig. 12

should be prepared for each prospective landing
site and each location L and L' as soon as the

nominal translunar portion of the trajectory has

been determined. Results of re-entry trajectory
calculations can be used to bias the curves obtained

from the restricted two-body force model and

thereby represent the actual situation more realis-

tically.

E. REFERENCES

1. "Orbital Flight Handbook," ER 12684, The

Martin Company, Baltimore, March 1963.

2. Battin, R. H., "A Statistical Optimizing Navi-

gation Procedure for Space Flight," Instrumen-

tation Laboratory, MIT, Cambridge, Massachu-

setts, ]May 1962.

3. Wheelon, A. D., "Midcourse and Terminal

Guidance," Report No. 145, Space Technology

Laboratories, Applied Physics Department,

Los Angeles, California, June 1958.

4. Porter, J. G., "Navigation Without Gravity, "

Journal of the British Interplanetary Society,
Vol. 13, No. 2, March 1954, p 68.

5. "Navigational Techniques for Interplanetary

Space Flight, '_ Report No. 2752-15-F, Uni-

versity of Michigan, Willow Run Laboratories,

Ann Arbor, Michigan, 1958.

6. Novak, D. H., "Two-Body Navigation and

Guidance in Cislunar Space, " ER 12447,

Martin Company, Aerospace Systems Division,

Baltimore, Maryland, May 1962.

7. Egorov, V. A., "Certain Problems of Moon

Flight Dynamics, " The Russian Literature

of Satellites, Part I, International Physical
Index, Inc., New York, 1958.

8. Pragluski, W. J., "Lunar Mission Midcourse

Guidance Concept Trajectory Analysis, Lunar
Landing Module, " Technical Report No. 11,

Martin Company, Baltimore, February 1962.
(Unpublished)

9. Kelly, T. J. and Adornato, R. J., "Deter-

mination of Abort Way-Stations on a Nominal

Circumlunar Trajectory, " ARS Journal,

Vot. 32, June 1962, pp 887 to 893.

VI-27





ILLUSTRATIONS

VI-29





Figure

1

2

3

4

5

10

11

12

13

LIST OF ILLUSTRATIONS

Title

Star Choice Angles

Star Choice Angles

View from Spacecraft Towards Earth

Typical Lunar Flight Ground Swath (southerly
declination of the moon)

Typical Lunar Flight Ground Swath (northerly
declination of the moon)

Minimum Eccentricity Allowable for Safe Earth Return

Time to Return to Earth from any Point in a Translunar

Trajectory

Characteristic Velocity Impulse AV A of the Abort

Maneuver (no changes in azimuth)

Time to Return for an Abort Maneuver from a Typical

Translunar Trajectory

Abort Velocity Impulse Required to Land in Australia

for a Typical Translunar Trajectory

Abort Velocity Impulse Required to Land in or Near
the United States for a Typical Translunar Trajectory

Complete Abort Data for a Typical Circumlunar
Trajectory

Abort Way-Stations for a Typical Circumlunar Trajectory

Page

VI-32

VI-32

VI-33

VI-34

VI-34

VI-35

VI-36

VI-37

VI-38

VI-39

VI- 40

VI-41

VI- 42

VI-31



FIG, 2, STAR CHOICE ANGLES

_P= 0.006 °

0 20 8O

(_1, (deE)

:].80

FIG. 2 STAR CHOICE ANGLF_

18o

iiI_\\ //_ .... _ = 90 °160 ',
•" _ = 60 °

140 // .,_, k,,

_oo, ...-"_ i,_---_-"
(de_) _'\ _.....j \ I" >

,, , \ /
0

0 20 40 60 80 IOO 120 140 160 180

_, (deg)

VI-32



FIG. _. VIEW FROM SPACECRAFT TOWARDS EARTH

Launch: 14 June, 1968, 14:14 Hr _T

View 3 Hours After Injection

_" O6
,_" ___ Pegasus

I / " / --_, _: " o \
oP / _Io _ ', )',,, ' 8 \

I 7 i / o-: "k _-,\
2

/ I:.v/°,'f ;'": _o_-o_
/ / -°/ I i _ ' Capricornus

N

Star Code:

Q 3rd. Magnitude or Brighter

_th. Magnitude or Brighter

Star 1 Star 2
o

Distance Req'd: Star I to Star 2

VI-33



, ,:p

i I ............. IE _ •

I

.............. ! "' l _'i:::,'_t:::;_ -¸ " _._

PaJ ,iogo..bit....lopeJ
for launch time %olerance

= 3.4hr

,,,/,,v',}/'b'",

Fig. 4. Typical Lunar Flight Ground Swath (Southerly Declination of the Moon)

#

Start _

Rellght-_

\

Parking orbit envelope for launch toler_'mce _ lO rain ,'

/

L_ Re-ent..y

Fig. 5. Typical Lunar Flight Ground Swath (Northerly Declination of the Moon)

VI-34



4,m

rn

M
0

r_

r-(

Q

r-!
,<

.rl
_J

-,'4
W

4.1
D

u
f.J

d

,el
!I

qb
C3 --

0

h

0
0

0

.,,4

0

I ! I _ I I L_

0

o

o

.el
%

• I_

0
fin

*el

0
¢Xt

0

121

0 0 0

0

VI-35



T:Lme To Return To Earth From £n_

Eccentr_city of &bort Trajectory, _£

1/I-36



VI-3 7



!/

VI-38



o L.

13

_r-4

M

q
_3 u

}-4

•r_ 0

0

_orl "
:> r.-(

0 m

4
.rl

(T-d

N

o I_ m

,_J

r_l _ ,ft 1! tl if _ U_ U

0

T

m

4J

4_

0

L_

"eq

4)
..G

lO

0

_6
0

CS

4P

C_

CO

0

g

¢3

r-t

."0

._4
C@

0

4)

C3

0

0

.0_ 1_

L_

4.)

4_

0
0

4,,1'

£I
.,-I
E_

0

0

0

kO

3;

(_ r-_

H _J

°.-I

_J

o,,r_
u_ ,-4 0

0j ,-_

O/3 0
• .O

VI-39



VI-40



0 0 : :

i0 O0 _ t_ '- -'= ....................

,,el

C) ..

0

VI-41
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VII, LUNAR ORBIT

A. LUNAR ORBIT MISSIONS

Lunar orbits are here defined as space vehicle

trajectories which lie wholly within the Jacobi C 2
region around the moon {Chapter III). They are

very well suited for reconnaissance and surveil-

lance missions where the objective is to obtain

mapping and close-range scientific data. Orbits

are useful in that a properly placed lunar satellite

can stay in lunar orbit almost indefinitely, with

its usefulness only limited by the life of the equip-

ment. At the present time, it is planned that

manned lunar missions will include a lunar orbit.

In this case, the lunar orbit provides the safety
feature of ballistic earth return prior to orbit

entry, longer reaction time prior to landing at a

preselected lunar" site, smaller total fuel require-

ments, and smaller abort fuel requirements when

compared to soft-landing lunar impacts (see Chap-

ter VIII). In the lunar orbit phase, the space vehi-

cle crew can determine repeatedly its position in

orbit and the position of the landing site before the

initiation of the deorbit maneuver. A logistics mis-

sion can employ a lunar "freighter" shuttling be-

tween an earth orbit and a lunar orbit, leaving

material in ]unar orbit for' later use by the lunar

expedition, to be called down at the time and

place desired. When lunar exploration has ad-

vanced beyond the initial stage, rescue, communi-

cation, navigation, and possibly even travel be-

tween distant lunar bases may be accomplished by
use of lunar orbits.

The lunar orbit phase is thus vital for almost

all future missions, as soon as lunar exploration

progresses beyond the stage of probes on approach
or impact trajectories and beyond approach trajec-

tories near minimum velocities. A brief descrip-
tion and classification of lunar orbit missions and

missions using a lunar orbit phase has been given

in Section A of Chapter IV. Lunar orbit param-

eters have also been discussed qualitatively and

quantitatively in connection with the circumlunar

trajectory catalogue (Section A of Chapter VI) and
the transearth trajectory catalogue (Section A of

Chapter IX). Both sample missions discussed in

Chapter XI, Section G, one a landing and the other
a reconnaissance mission, use a lunar orbit

phase. In the mission discussion, the lunar orbit-

al parameters, as they are limited by mission

constraints, and methods for obtaining a first es-

timate of orbital parameters have been given.

In the present chapter, near-lunar satellite
orbits are discussed in relative detail. In Section

B, the characteristics of an orbit around the moon

as affected by the triaxiality of the moon, the sun
and the earth are discussed. These effects are

compared, and it is shown that for a close lunar

satellite, the sun's effects can be neglected. The

equations of motion in a selenocentric coordinate

system are derived from a potential function based

on atriaxial moon. First-order secular changes

in the orbital elements due to the moon's oblate-

ness are presented in graphical form as a func-

tion of orbital inclination. Stability of a lunar or-

bit is briefly discussed. Finally, relationships

for determining ground traces and longitude incre-

ments between successive ground traces are given.

This data is important for orbital parameter

choice in lunar mapping, reconnaissance and sur-

veillance missions.

Velocity requirements for entry into a lunar

orbit in the form of summary plots are presented

in Section C. The bulk of the material is based

on the assumption that the effects of finite burn-

ingtimes are negligible. Results for two differ-

ent types of trajectories (circumlunar and ap-

proach}, based on a simplified earth-moon model,

are presented and compared. It is seen that there

are certain restrictions on the trajectory param-

ters that must be taken into account when planning
a lunar mission.

In Section D, a qualitative discussion of lunar

orbit determination schemes for both manned and

unmanned vehicles in a lunar orbit is presented.

B. CHARACTERISTICS OF LUNAR ORBITS

In the design of lunar orbits the first and fore-
most concern is the determination of orbital pa-

rameters which best fulfill the mission objective.
In most cases this requires eventually a rather

accurate determination of space vehicle position

with time, which involves either the use of gener-

al perturbation theories or a numerical integra-
tion on the digital computer if only short-time

ephemerides of a lunar satellite are required.

However, since very little graphical data on or-

bits around the moon has been published in the

literature, and hardly any numerical evaluation

of general perturbation theories as applied to
lunar orbits has appeared, the discussion of this

section will be directed toward a summary of im-
portant analytical results and the presentation of

graphical material.

i. Keplerian Orbit Parameters

To obtain gross orbital characteristics, the

moon may be considered a spherically symmetric

body as a first approximation, with the influence

of the earth and the sun neglected. Theoretically,

this model is equivalent to one in which the lunar
mass is concentrated at the center of the moon.

The gravitational potential for this lunar model
is

= -- (i)
Uff r0

and the well-known restricted two-body Keplerian

equations apply, as given in Chapter Ill, Section K

(Ref. i), for elliptic and circular orbits.

From a flight mechanics point of view, the

period of revolution _'0 for an elliptic orbit with

semimajor axis a 0 as a function of a 0,

a 0

7 0 = 2_r _g (2)

and the velocity of a satellite V_.c in a circular

orbit with radius r 0 as a function of r O,
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(3)
-- c r 0

are of special interest. These parameters have

been presented as a function of mean altitude

h 0 = a 0 - Rg, where Hi = 1738. 16 km is the

radius of the equivalent spherical moon, and of

circular orbit altitude h 0 = r 0 - R_ in Figs. I

and 2 for lunar orbits and close lunar orbits,

respectively. For preliminary design calcula-

tions and for orbits of short duration, these

numbers are a good approximation to the actual

orbit.

However, these gross orbital characteristics

are not good enough for a long-time satellite of
the moon and for more accurate calculations.

In this case, perturbing forces, which are small

effects compared to the principal force of lunar

attraction, have to be taken into account. The

perturbing forces that will be discussed here

are due to the gravity fields of the earth and of

the sun and to the asphericity of the lunar gravity

field.

2. Orbit Perturbations

a. Solar perturbation

Consider the gravitational attraction of the
sun on a lunar satellite first. It can be shown that

for a lunar satellite orbit, the effects of the sun

can be neglected when compared to those of the
earth. Let the masses of the lunar satellite, sun,

moon, and earth be denoted by M A, M O , M_ ,

and M O, respectively. Assume an inertial frame

of reference centered at the sun (which is a good

assumption, since M O >> M e, M_ , M A) as

shown in the sketch below:

M.A _IA Mq

The equation of motion of the lunar satellite is
in vector form

: (M(D)
MA \ dr- / FMA

or:

d2 _'Q/x

where FMA

+ (M_) + (M e)FM A FM A

(4)

(5)

---FMA (M G) =-F (rQA) -

GM G M A

2

rQ A

_QMA
- -2---is the magnitude of the gravitational

rQA

attraction of the sun on the lunar satellite, etc.

The motion of the moon is given by:

M, k dt2 = _ (-_O')+ _ (re'

where the force of the satellite on the moon is neg-

lected (i.e., these equations are for a restricted

4-body problem). Using Eqs (4) and (5) and the

relation rcA = r(DA - rQ_ , it follows that:

dt 2 _-_

or

M A _ (F_.A) + _oMA

Lr®¢

roa Lre¢ r@s

The magnitude of the second term on the RHS

of Eq (8), which is due to the sun, can be approx_

(- rCA -_ r_A<
imated by _(D MA _ r_-_-T_ since < roq ;

the magnitude of the last term of Eq (8), which is

due to the earth, can be approximated by _ M A

rr_-_ since r(A < < re_ The ratio of

these terms is given by:

3 3

Me r(})l Me \roe-

(9)

which justifies the omission of the effects due to

the sun when compared to those of the earth.

Schechter (Ref. 2) uses Pontecoulant's lunar

theory to obtain an idea of the sun's perturbative

effect. Schechter considers a eoplanar restricted

four-body problem in tile ecliptic plane; he ex-

pands the sun's gravitational field in a Taylor

series around the instantaneous lunar position,

and retains only the leading term of the series.

The magnitude of the solar effect on a lunar

satellite obtained there is roughly 0.3% as large

as the effect exerted by the earth, or less than

half of the approximate value obtained in Eq (9).

Solar effects on lunar satellites can thus be con-

sidered higher-order effects and neglected.

b. Lunar asphericity perturbations

Before considering the actual magnitude of the

earth's gravitational attraction, effects of lunar
asphericity on lunar satellite orbits will be dis-
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cussed; the earth perturbations will be com-

pared later to those of lunar asphericity. Thus,
we consider next the effects of the triaxially cllip-

soidal shape of the moon on the satellite orbit.
Assume that the moon and space vehicle are

the only bodies in the dynamical system, and

that the lunar potential is expanded in terms of

spherical harmonics. By the use of MacCullagh's

theorem (Ref. 3), the lunar potential U can also

be written in terms of the lunar moments of inertia.

Several forms of U_ which are widely used have

been presented in Chapter If.

Another form of U_ which is given in terms of

the selenographic coordinate system x S, YS' Zs is

U{ - rs

(lO)

where R is the radius of the moon in the direction

of the earth (denoted by a in Chapters II and IV) and

J2' C2, 2 are the constant expansion coefficients,

which can be defined in terms of the lunar moments

of inertia as given in Chapter II. An advantage of
Eq (10) is that it shows explicitly the two perturba-

tive terms which are due to the asphericity of the

moon. The J2 term represents the oblateness of

the moon (i.e., the latitude dependence of the lunar

radius), and the C2, 2 term represents the ellipticity

of the equator (longitude dependence of the lunar

radius).

The selenographic coordinate system rotates
with the moon, and before an explicit form for

the gravitational force of the moon on the vehicle

can be given, a transformation to the inertial

(for this dynamical system) lunar equatorial co-

ordinate system x_, y_, z_, must be made.

This transformation is given by Eq (2} of Chapter

III, and U_ in the inertial coordinate system be-

comes:

+ 3 c_._ _x _ 2)
r{1 2 ¢ - y_, cos 2 (A s

+ _¢ t)+2sin2(As+wt)x_ _]111)

The equations of motion in the x_ , y_ , z_

coordinate system can be obtained by partial

differentiation:

. OU_, . OU¢ . ,, OU¢

x¢ --_ ; y_ : y_-, z_= _z_

(12)

Carrying out the indicated operations, one ob-
tains:

.,x,f,= _ + 2 -5(

rf 2 rq

R 2

3 C2'24 _"fx_2'' 3 Y_ 2

rq

+2z¢ 2) cos 2 (A S+ _(t)

;I

R 2

rq

- 5 xr_ / sin 2 (A S ÷ _

_ Y¢ I 3 J2 R2 II-- --3 1+re 2r

ix,2

(13)

+3y_ 2+ 2 z{ 2) cos 2 (A S

2 t-

6 C 2 R 2 x(y__) [
+ _ t) ,22 1

- 5 (r_ sin 2 (A S +_ t

(14)

_{ fl_ z_ < 3 J2 R2 I
= - --St--- 1 + 3

r 2r_ 2

z, (x:-,.,
+ 4

rl

30 R 2 x¢C2,2 Yq
cos 2 (A S +_q t) + 4

rd

sin 2 (A + t)_
S J

(15)

These rather complicated equations of motion can

be solved by numerical integration to yield the

satellite position.
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Another approach to the problem is to express

Uq in terms of the orbital elements a, e, i, to,

_z', and f, which were defined in SubsectionA-3c of

Chapter Ill:

sin 2 (f + to) cos 2 i_ (16)

_J _3

- sin 2 (f + to) sin 2 (f_' - tol t) cos i))[_

where r a can be expressed in terms of the ellip-
tical elgments of the satellite by:

a (1 - e 2) (17)
r6 - 1+ e cosF

and where f, the true anomaly, is related to

the mean anomaly, by the differential equation:

df a 2 _-_ 2

d-_-: _ _I -e
re

(18)

It is now possible to form the perturbing function:

(19)

and to use general perturbation methods to

determine the time-variation of the orbital

elements. The perturbing function _ can be

divided into terms that arise due to J2 and terms

that arise due to C2,2. The function _ can

additionally be divided into secular terms, or

terms that keep increasing with time, into long-

period terms, or terms that are periodic with

an approximate period of the rotation of peri-

cynthion, and into short-period terms, which

are periodic with approximately the same period

as the satellite period T O . The desired term of

_¢ can be substituted into the variation-of-

parameter equations, one form of which is given

by Eq (I01) of Chapter III and other forms in

Chapter Ill of Ref. I, which form a set of six

first-order ordinary differential equations com-

pletely equivalent to the equations of motion (13)

through (15). These equations can then be solved

for the secular, long-periodic and short-periodic

variations in satellite orbital elements due to the

lunar potential.

Consider the oblateness coefficient J2" From

Chapter H, it is seen that this expansion coeffi-

cient is the largest one in the lunar potential,

and, heuce, oblateness effects can be expected to

be the most notable asphericity effects on the

lunar satellite orbit. Of particular interest to

the mission designer are the secular effects,
since these increase with time and since it is

often desired to obtain the average satellite

behavior over a long period of time for lunar

orbital missions. Since the earth is also oblate,

analytic work on near-earth satellites is also

applicable for lunar satellites. In the following
discussion of lunar oblateness effects, the secular

effects will be discussed qualitatively, quantita-

tively, and finally, graphically. Periodic effects

on the radius will be described only.

Due to the small oblateness of the moon (J2 < i),

the lunar satellite orbit is very nearly a circle or

an ellipse. To first order in oblateness (using

terms to J2 in the expansion of the gravitational

potential), the orbital plane precesses around the

lunar polar axis at a variable rate (nodal regres-

sion). In addition, the line of apsides defining

the orientation of the satellite trajectory in the
orbital plane rotates in this plane at a variable

rate (apsidal rotation). The dependence of the
mean motion, or the average rate of rotation of

the satellite in the orbital plane, on the orbital
inclination results in an oblateness correction to

the period of the unperturbed (or restricted 2-

body) motion. Restricted 2-body motion is re-

ferred to as zero-order or unperturbed motion;

if J2 is used, in addition, the motion is defined

as second-order; the inclusion of C2, 2 defines

third-order motion; and all other, yet-to-be-

defined spherical harmonic expansion coefficients

of U_ define fourth-order motion and are negligible.

The mean rate of nodal regression to first-

order has been found by many authors (Refs. 4

through ii and others). In units of degrees per

nodal period (time between successive ascending
nodes), it is:

d_ R 2

=-36o. _J2_(l_e2) 2c°si o

(20)

d9 d_
Since _- = 0 (J2 -dT )' any one of the following

expressions can be used to second-order in the
denominator:

a 2 (1 - e2)2a02 (1 - e2)2a 2 (1 - e2) 2, p2, _2

where a 0 is the Keplerian value of the semimajor

axis, p2 = a 2 (1 - e2) 2 is the semilatus rectum

of the orbit, r 0 is the average orbital radius

(r 0 = pfor Keplerianorbits), and a bar denotes

an average value of the quantity about which it

varies periodically for oblate moon orbits. The
d_

value of _- is negative for a direct orbit (i 0 < 90 ° ),

d_
i. e., it is a shift toward the west; while _ is

positive for a retrograde orbit (i 0 > 90 °). For

an equatorial orbit (i 0 = 0 ° , 180 °), the ascending
d_

node _is undefined, but _ can be defined in the

limit as i 0 _0 ° or i 0 --180 ° In Fig. 3, (-

is plotted as a function of i 0 for three values of p.
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It is seen from this figure that the nodal re-
gression is largest for an equatorial orbit and

zero for a polar orbit; it is larger for a circular

orbit (e = 0) than for an elliptic orbit 0< e < I,

and since it is a gravitational force, it decreases

with the inverse square of the distance from the
center of the moon.

The mean rate of apsidal rotation has been

found by many authors (Refs. 4 through 11 and

others); in units of degrees per nodal period, it
is

dco 3J2 R 2

= :360 2
a 2 (i - e2) 2

5 2
• (2 - 2 sin i0) (21)

For near-polar orbits, the perigee regresses,

i.e., it moves against the direction of satellite
da

motion, and _ is negative in value, while for

near-equatorial orbits the perigee advances--
i.e., it moves in the direction of satellite motion,

dco
and _- is positive in value. The inclination

5 2 .
angles at which 2 - 1_ sin i 0 = 0, or 10- 63. 45 °

and i 0 -_ 116. 55 ° are known as critical in-

clination angles. Near the critical inclination,
5

when 2 - g sin 2 i 0 = O (J2), or approximately

for inclinations between 62. 45 and 64. 45 °, as

well as between 115. 55 and 117.55 °, a second-

order theory is insufficient to describe the

apsidal motion, and Eq (21) does not hold. This

case has been discussed by Struble (Ref. 12).

Figure 4 presents the rate of apsidal rotation as
a function of orbital inclination for three values

of p. The perifocus location co is undefined

for circular orbits, but it is possible to define
dco
_T- in the limit as e _0. The same general

d_d
comments on the dependence of dT on e, p apply

df_
as in the case of--

dt

The orbital period in unperturbed satellite

motion is given by Eq (2) which has been plotted

in Figs. 1 and 2.

In perturbed satellite motion, or when second-

order perturbing forces due to lunar oblateness
act on the satellite, one can define three, in

general distinct, periods of motion:

(1) The anomalistic period, the time from

one pericynthion to the next. In that

time the elliptic angles (true, mean,

and eccentric anomaly) increase by

360 ° . while the orbital central angle

= _ + f increases by rnore or less

than 360 °, depending on whether the

apsidal rotation is against or in the
direction of satellite motion.

(2) The nodal period, also called dra-

conic period, the time from one

ascending node to the next. In that
time the orbital central angle _? = co + f

increases by 360 ° , since _ is measured
from the instantaneous position of the

ascending node. The satellite does

not, except at an orbit inclination of

90 ° , return to the same relative posi-
tion in inertial space after one nodal

period due to the regression of the
nodes.

(3) The sidereal period, the time for the
satellite to return to the same relative

position in inertial space. In that time

the satellite central angle as measured

from a fixed reference, which is not

to be confused with the central angle

as measured from the ascending node,

increases by 360 ° . In artificial satel-

lite theory, the sidereal period is less

important than the other two periods;

it is rarely used, and it will not be

discussed any further.

In many satellite calculations, especially in
approximate ephemeris prediction, it is more

convenient to use the nodal period 7/_ than the

anomalistic period, -r r, since (especially for

circular and near-circular orbits) the ascending

node is a more easily identifiable point than

pericynthion, except in the case of equatorial

lunar orbits. Unfortunately, however, differing

expressions have been obtained for it in the

literature (compare the nodal periods derivable

from mean motions given in Refs. 6, 7, 8, 10,

13, 14, 15, 16, 17, 18 among others).

An expression for the nodal period was de-

rived from Struble's (Ref. 12) first-order theory

by Martikan and Kalil (Ref. 13) for small ec-

centricities, e =O(J2), and shown to be com-

patible with expressions for the anomalistic

period for large values of eccentricity by some
numerical examples in Ref. 13:

_ = 2_ (_) 7 _ R2
(_ _ h-8J2 2a 2 (I - e 2)

(7 cos 2 i 0 - i) 1 (22)

J

where a is the mean semimajor axis of the per-
turbed orbit defined in terms of a reference

Keplerian semimajor axis (which should not be
used, since it is but a first estimate for a):

-ff

fl 3 R 2
a0 - 4J2

2
a 0 (1 - e2/2

13cos2i0 1) , TY)
The oblateness correction to the period as

described by

( 2 3)

_r_ : T_ - TO
(24)

has been presented in Fig. 5 as a function of

inclination for three values of p = a (1 - e2).
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Again the corrections are larger for a circular

orbit (e = 0) than for an elliptic orbit 0< e < i,

and it decreases with the inverse square of the

distance from the center of the moon since it is

a gravitational force.

Another important quantity of a lunar orbit

is the variation of the orbital radius rq with

time. The radius in terms of orbital elements

is given by Eq (17), and since the semimajor

axis a and eccentricity e exhibit no first-order

secular changes, rq undergoes short-periodic

changes since the term cos f in the expression

for r_ undergoes short-periodic changes. If

one uses Kork's form (Ref. 19) for the radius,

which is equivalent to expressions derivable from

Struble (Ref. 12), Kozai (Refs. 4, 20) and Izsak

(Ref. 21) for eccentricities of order J2' then the

expression for the instantaneous radius in one

satellite revolution can be written.

= _ [1- e cos(/_-_)r_

t_ 2

+ ¼J2(_) sin2 io c°s 2/31 '

e = O (J2 } (25)

The maximum variation in radius about the

Keplerian orbit radius r_ 0 = _ F 1 - e cos (_-w)7,

if Eq (25) is compared with Eq (17), occurs for a

polar close lunar satellite orbit (i0 = 90 ° , _ _R).

In this extreme case the radius variation due to

lunar oblateness is given by

± O. 09 km (26)

This radius variation decreases as the in-

clination decreases, i0 <> 90 °, and it decreases

with semimajor axis --=R< 1, but altogether it is
a

a very small variation. Similarly the short-

periodic variations in e, i are rather small and

result in position variations of about the same

magnitude.

No explicit expressions exist for the effects

of the terms of _>_ containing the equatorial

ellipticity coefficient C2, 2 on lunar satellite

orbit parameters. The numerical value of

C2, 2 is one order of magnitude less than the

value of J2' and one can expect the effects of

equatorial ellipticity to be less than those of

oblateness. Direct effects of C2, 2 on orbital

elements can again be obtained by solving the

variation-of-parameter equations using only the

terms in _ which contain C2, 2 as a coefficient.

c. Earth perturbations

The next step in determining the motion of

a lunar satellite is to compare the perturbing

effect of the earth with that of the lunar asphericity,
where both effects vary with the altitude above

the lunar surface. Lass and Solloway (Ref. 22)
obtain an approximation for the earth's potential

in the setenographic coordinate system. The

acceleration of the lunar satellite due to gravi-
tational attraction of the earth, which is the third

term on the RHSof Eq (7), can be written as:

M A

:
M A

(xs --_) }s + Ys}s+ zS _zs
x S- P_II) 2 + ys 2+ z S

%I+ -- (27)

Equation (27) becomes for 7"S 2 < < P_d2

with P_I the fixed distance between the earth and

the moon,

MA ._

- (%q)
M A

- 3--- (2 x S x S- YsYs- Zs 9S)

= - grad (rs 2 - 3 Xs2 (28)

where grad is the gradient operator grad ---

O ^ O a _S" The earth'sXs+ s
potential for a lunar satellite can thus be ap-

proximated by

I
The earth's potential U@ can now be compared

with the terms in the lunar potential U¢ , or more

properly, the gradients of the potential, which

are the gravitational forces, should be compared.

Numerical values for the ratio of the earth's

potential as given by Eq (29), to the J2 and C2, 2

terms of the lunar potential, as given by Eq (10),

have been obtained. The approximations are only

valid for close lunar satellites and crude enough
so that no differentiation can be made if the

satellite is between the earth and moon or on the

opposite side of the moon. The results are pre-

sented in the following table where the ratios

J2 3_q R 2 J2/p@ rs2 _ 3

ea-_= rs3 t _---3---2r(_ 3( _ J2

(3o)
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and

R 2 2

C2'2ea--a--_: 3_q rS 3 C2, 2/__/2Y-_ 3rS :6(_¢_@q_) (_

3

C2,2

(31)

are given as a function of lunar satellite altitude

in lunar radii (LR):

h (LR)

0

1

2

3

4

J 2 / earth

84.7

10.6

3.14
1.32

0.68

C2,2/earth

15.0

1.87

0.55

0.23

0.12

The earth' s perturbation equals the lunar C2, 2

term at an altitude of approximately 2700 kin, and

it equals the lunar J2 term at an altitude of ap-

proximately 6100 kin. For a close lunar satellite,

the lunar aspbericity terms predominate; these

terms can be considered a first approximation

to the motion of the lunar satellite.

d. Lunar atmospheric perturbations

The moon has an atmosphere which, at the

surface, is estimated to be less than 10 -12 times

the density of the earth's atmosphere at sea level.

Since the atmospheric drag forces are propor-

tional to the density times velocity squared (for

more data on aerodynamic forces see Subsection

B-4b of Chapter IV), a hypothetical ratio of drag

forces of a satellite of the earth orbiting at sea

level and one of the moon at distance R(_ can be

found. This ratio is given by

D_ S L ,_Pll SLVgc_ "_10-12 (1. 7)2 " 5 x10-14_ -

_SL P_ SL V2 c (-7_ 9)g (32)

where pl SL and p® SL are the sea-level atmos-

spheric densities of the moon and earth, respec-

tively, and VI c' V_ c are the circular satellite

velocities at zero altitude. This ratio might

change by several orders of magnitude with lunar
and earth orbital altitude, but by all accounts

atmospheric drag is an utterly negligible force

in lunar satellite orbits. Atmospheric drag act-

ing on a circular lunar satellite orbit at an altitude
of 10 km is less than the atmospheric drag of an

earth satellite in a 1000-km circular orbit. Of

course, data on the lunar atmosphere is still

subject to conjecture.

e. Solar radiation pressure perturbations

The effect of solar radiation pressure has

been discussed in Subsection B-4a of Chapter IV.

The magnitude of the force is of the same order
as in the case of earth satellites, since the moon
and earth are about the same distance from the

sun and, for close lunar satellites, shadow time

must be considered, since for certain orbital

parameters it may be as much as 40% of the total
time in orbit.

3. Stability of Lunar Orbits

The iinal question in establishing orbital

parameters for lunar satellites concerns stability
of the orbit. The moon exerts a much smaller

force on a lunar satellite than does the earth on

an earth satellite at a comparable distance. Also,

the perturbations on a near-lunar satellite due to

the earth are much larger than the perturbations
of the moon on near-earth satellites at a com-

parable distance. Only the effects of asphericity

are more pronounced in the case of the earth than

the moon, while solar perturbing effects are about
the same for near-earth and near-moon satellites.

Hence, stability of a lunar satellite is much more

of a problem than the stability of an earth satellite.

In particular, it is important to determine whether

the combined gravitational attractions of the earth
and sun (or other forces) can distort a lunar orbit

sufficiently to cause the satellite to impact on the
lunar surface.

The time period from the initially established

orbit until impact has been given the name "life-

time" by some investigators. This term should
not be confused with the term "lifetime" as it is

applied to earth satellites, where it is the time

period from the initially established orbit until
atmospheric drag causes the satellite to re-enter

the denser portions of the earth's atmosphere.

No investigations into stability have been per-
formed for this chapter, but one note on the sta-

bility of lunar satellites has been reviewed.
Schechter (Ref. 2) applies a modified version of

Ponteeoulant's lunar theory (see Ref. 23 for more

details on this lunar theory) to the problem of
motion of a lunar satellite. Scbechter finds the

maximum decrease of pericynthion radius ArpL

as a function of rpL = a (1 - e) is given approxi-

mately by

ArpL = (rpL)min rpL -- _ __15 em (1 + e)

rpL rpL 8
(33)

27r/70 .
where m = -- is the ratio of angular velocity

of the satellite in its orbit to the rotational rate
of the moon. Seheehter takes a conservative

lunar orbit (from a perturbation standpoint) of

e = 0.2, m = 1/15 (or a -_ 14,500 kin), and the

maximum decrease in pericynthion radius rpL =
15

a (1 - e) = 11,600 km is ArpL = - --8- em rpL.

(1 + e) = -350 kin, or about 3,%. The particular

lunar satellite will have an infinite lifetime.

However, these perturbations may in time in-

crease the apocynthion radius sufficiently so

that the mission requirements are not met.

4. Ground Traces and Longitude Increments

For reconnaissance, surveillance and mapping

missions of the lunar surface from a near-moon

orbit, the ground trace, or succession of sub-

satellite points on the lunar surface, and the

longitude increments between successive ground

traces are important. Both depend on the choice

VII - 7



of orbital parameters, and an orbit may be de-

signed to cover certain regions of the moon and

to provide a specific value for the longitude in-

crement. The longitude increment that can be

achieved for certain lunar orbits in turn is con-

strained by mission requirements, sensor limita-

tions such as the field of view, the resolution,

the image motion compensation required, and the

maintainability of the system in the near-lunar

environment.

In the following, only oblateness effects of the

moon are considered, with lunar ellipticity and
earth effects neglected. Also, since uniform

picture quality and a simple image motion com-

pensation system require circular or near-circular

orbits for reconnaissance, surveillance and map-

ping missions, the case of a circular orbit around

the moon will be treated separately.

During each revolution, the satellite ground

track experiences a longitude increment of A _r

degrees per nodal period to the west, where,

under the preceding assumptions:

dr2 degrees
AAq = - ¢0q (_'0 + A_-_) - _ nodal period

3 1/2

=-MII 2_(_-_)[1-_J2(r_f(7cos2io-l_

- 360- 2J2 cos i 0 nodal period

(34)

where R =- a, the longest semiaxis of the moon, r S

is the radius of the circular lunar orbit, the minus

signs indicate a shift to the west or negative seleno-

graphic longitude, k G , and the nodal period is

chosen because it gives the longitude increment at

the same point in orbit. The first term on the

right-hand side of Eq (34) above is due to the

moon's rotation in one nodal period, while the
second term is the average regression rate of

the ascending node (or any other point on the

ground track in this first approximation) due to

lunar oblateness, as given by Eq (20), applied to

a circular orbit. Since _0 is at least 6500 sec

(see Fig. 2) and A-r/3 is at most 3 sec (see Fig. 5),

the oblateness effect on the period is less than
1/2000 of the central force effect, and in view of

the other approximations it can be neglected.
Hence,

3 1/2

(_) (_S)2 degAk_ - -_¢ 2= - 540 J2 cost 0 rev

(35)

In order to obtain a qualitative idea of the

magnitude of these effects for a 100-km circular

equatorial orbit around the moon, one can obtain

from Figs. 2 and 3 and from Eq (35), with

Me T 1. 52504 x 10 -4 deg/sec:

A)lq - -1.079 - 0.102 deg/rev = -1.181 deg/rev

(36)

In this extreme case the second term in Eq (35)

(due to nodal regression, -0.102 deg/rev) is about

one-tenth of the first term (due to the lunar rota-

tion during one period, -1.079 deg/rev). Lunar

oblateness effects on A/¢ are very significant,

and cannot be ignored. They are as significant
as in the case of a satellite orbit around the earth,

primarily due to the much slower rotational rate

we of the moon about its axis. This smaller _

counteracts the effects of a smaller oblateness

coefficient J2 for the moon, as well as the weaker

central force, as given by the gravitational con-

stant pC of the moon as compared with_@.

Consider next a 1000-kin circular equatorial
orbit around the moon, for which

A/¢ T_2.059 - 0.047 deg/rev = 2. 106 deg/rev.

(37)

For this higher orbit, lunar oblateness accounts

for only about one fortieth of the total Ak 5"

showing that the weaker central force, as given

by the gravitational constant p_ of the moon, in-

creases the period and decreases the oblateness
df_

effects, or _R- ' considerably with altitude. Of
dg_

course, there is a dependence of --dr{ on inclination--

i. e. , it decreases with increasing inclination and

is zero for a polar orbit--while the period, and

hence the first term of AA_ , remains the same

in this approximation.

3 1/2

ol, ptic term ' )
,%an, berep,  e the

(_}/2term (R_r_ by in the same equations, where

a- and p = _ (1 - e 2) have been defined in Sub-

section B-2b.

However, besides the longitudinal increment
between revolutions, the location of the subsatellite

point at any time during one revolution is of in-
terest. To this end, consider a circular orbit

around the moon and secular lunar oblateness

effects with the exception of the oblateness effect

on the period. The orbit ground trace, or the

selenographic latitudes and longitudes of the sub-

satellite points as a function of time, can be

computed in several steps. The satellite ground

trace in a selenocentric nonrotating lunar equa-

torial coordinate system x S YS z S can be found

by spherical trigonometry. The declination 5 S
of the subsatellite point is

-1
5 S = sin (sin i 0 sin _), -90 ° < 6 S< 90 °

(38)
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where

/30 + _dt, 0 ° < /3< 360 ° is the orbital

central angle measured from the ascend-

ing node

/30 = 0 is the orbital central angle at the

time of ascending nodal crossing of

the satellite

360 (.de g)
T 0 \s_ is the constant angular velocity

of the satellite in its circular orbit,

dt, 0 < dt <_ T 0 is an increment of time,

measured from the ascending node to A.

The longitude of the subsatellite point relative to

the ascending node, AXNA is

= +cos-I [ cos _ 0° <--IAXNAII[ < 360°A)_NA \cos 6S/ '

(39)

where the positive sign applies for direct orbits

(i0 < 90 °), the negative sign applies for retrograde

orbits (i0 > 90 °), and AANA = 0 for polar orbits

(i = 90 °). The geometry of the satellite ground

trace is illustrated in the following sketch:

Satellite

_bit

E nar
N A _,llA Equator(Ascending

Node of Orbit)

By use of the vector relation,

tan 6 S

sin Z_kNZ _ = tan i0

and by use of Eq (38), Eq (39) can be written

AkNA = ±tan -1 (cos i 0 tan t3) (40)

where + is for direct, - for retrograde and

AkNA = 0 for polar orbits. In applying Eqs (38)

and (40), great care must be taken to use the

correct quadrants of the angles /3 and AkNA.

On a rotating moon, the declination of the

subsatellite point 6 Sbecomes the selenographic

latitude 0(_ directly, while an increment _o¢ dt

must be added to A)_NA in order to obtain tile

selenographic longitude Ak_A relative to the

ascending node. The major effect of the lunar

oblateness (the regression of the nodes) contri-
butes the term

d_ R 2

+-_dt = -540 J2 (_-SS) cos i 0 dt
(41)

to the longitude of the subsatellite point.

To summarize, the ground trace equations

for circular orbits on a rotating moon, including

the nodal regression, become

-i

_ = sin (sin i 0 sin /3)

k_ = kAN + tan -1 (cos i 0 tan _) + MII dt

2 (42)

- 540 J2(_S ) cos i 0 dt

where the positive sign applies for i 0 < 90 _, the

negative sign for i 0 > 90 ° , and tan -I (cos i 0 tan /3)=0

for i 0 = 90 ° ,

d_
: _0 + -aidt

_AN is the selenographic longitude of the

ascending node.

Equations (42) can be used for elliptic lunar

orbits if

(i) _ is replaced by

d_ dt + f0 + dfw + f = _0 + _[t _- dt, (43)

dw
where _- is the apsidal advance given

by Eq (21) and the subscript zero denotes
conditions at the time of the ascending

nodal crossing of the satellite.

df

(2) _ is not constant, but the true anomaly

f must be expressed as a function of time

through Kepler' s equation.

(3) The angle _o_ dt is a function of f, as
dr2

well as the angle _ dt.

R 2 dfl
(4) The factor (--I m _ must be replaced

2 \rs' a_

by (pR_) , where p = _ (i- e2).

C° ENTRY AND DEPARTURE MANEUVERS

BETWEEN LUNAR ORBITS AND
TRANSFER TRAJECTORIES

The material in Section B described the effects

of various forces on lunar orbits once they are
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established.In this section,theAVrequirements
to establishlunarorbits fromtranslunartrajec-
toriesandto injectintotransearthtrajectories
from lunarorbitswill bediscussed.These
maneuversmaybedividedintothreecategories:

(i) Velocity requirements assuming finite

burning times and variable thrust-to-

weight ratios of the rocket engine.

(2) Velocity requirements for circumlunar

trajectories assuming an impulsive

maneuver.

(3) Velocity requirements for one-way

trajectories (injection into lunar orbit
from a transhnar trajectory or in-

jection from a lunar orbit into a trans-

earth trajectory) assuming an impulsive
maneuver.

Figure 6 presents the AV requirements for entry
into a circular lunar orbit at an altitude of 185.2

km from a typical approach trajectory when finite

burning times and variable thrust-to-weight ratios
are employed. These results were obtained by

assuming that the entire maneuver was conducted
in the trajectory plane, and that during rocket

burning the thrust vector was parallel to the ve-

locity vector at all times. The effect of off-

nominal conditions as the entry maneuver was
initiated is not included.

Under these assumptions, the required change

in velocity can be obtained from the rocket equa-
tion:

t b

(_X:-)/Mo\/',V
-- gq)0ispln + g_ sin 7 dt.

\'"e" 0 (44)

where M 0 is the initial mass and M e the final

mass of the space vehicle, t b is the burning time,

the flight path angle, g_ 0 the earth sea-level

value and g_ the local value of the acceleration

due to gravity. The first term on the right is an

expression of the conservation of linear momentum

and depends on the propellant consumed. This

term takes into account the thrust-to-weight ratio,

T__ since the specific impulse Isp is defined as:%,
T

I = -v-- (45)

sp Wf

where _rf is the propellant weight flow rate of the

rocket engine. The second term takes into ac-

count the gravitational effects during rocket burn-

ing (change in flight path angle and change in
altitude). The increase in vehicle velocity due to

the local lunar gravity (the second term in Eq (44))

must be counterbalanced by an increase in total

impulse of the vehicle's rocket engines. From

Fig. 6 it can be seen that as T/W 0increases, the

velocity requirement reaches a lower limit. It

has been found that for practical lunar vehicles,

the T/W0-ratios are large enough so that the

differences between finite burning time and a

velocity impulse maneuver (infinite thrust-to-

weight ratio and infinitesimal burning time) are

very small.

A general idea of the impulsive velocity man-

euver requirements can be gained from Fig. 7

which presents a summary plot of these AV re-

quirements for circumlunar trajectories. The

manuever is performed at the pericynthion point

of a circumlunar trajectory, and the lunar vehicle

enters a circular orbit at the pericynthion altitude.

The AV required to enter the circular orbit is the

difference between the velocity of the vehicle on

the trajectory at pericynthion and the circular

lunar satellite velocity at the pericynthion altitude.

The plot shows AV as a function of hpL for a

maximum, average, and minimum earth-moon

distance R_ Requirements for AV depend on

the translunar trajectory inclination, and a value

of iVT L = 75 ° with respect to the MOP was selected

as this represents a limit for lunar missions

launched from Cape Canaveral. For a translunar

trajectory close to the MOP, e.g., 2°° the values
of AV of Fig. 7 are reduced by an average of 33

m/see. A transearth inclination of iVT E = 60 °

with a direct north earth return was chosen to en-

sure that the return would always be direct. Since

the maximum inclination of the MOP to the earth,s

equatorial plane is approximately 28.5 ° , this con-
dition is satisfied.

For a retrograde return, there is an in-

crease in the required AV. Data in Fig. 7 is
based on circumlunar trajectories which were

obtained by use of the Voice technique (see
Chapter IV). To obtain a more realistic model

of the earth-moon system, computer runs were

made utilizing a restricted three-body trajectory

program, and the results for a circularizing ve-

locity impulse were compared with those obtained

from the Voice program. The following table

presents a comparison of the two programs for

various trajectory parameters.

AV Requirements for Lunar Orbit Entry
(m/sec)

(_Vlrestrictod 3-body
Restricted

Voice 3 -body AV(Voice)

R®¢ = 56 El/

hpL = 185.2 km 1034.024 1052.876 18.852

iVT L = 75"

iVT E = :14.6 ¸'

Rq)_ = 56 I;R

hpl _ = 185.2 km 986. g42 ' i004.642 17._00

iVT L = 75"

iVT E = 98. 1 o

R_)¢ _ 56 ER

hl,i" z 185.2 kin 954.519 9_2.098 17.479

iVT L = 75°

iVT E = -178.9 ¢

R_| = 56 ER

hpL = 185.2 km 953.947 971.427 17.480

iVT L : 2 •

IVT E _ 105. 2 °

R_){ = 64 ER 658. 946 689. 156 30. 210

hpL _ 50OO km

iVT L = 60 °

iVT E _ -115.5 o
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As thetableindicates,thevelocityimpulses
for therestrictedthree-bodyforcemodelarehigher
becausein therestrictedthree-bodyforcemodel,
thevehicleis alwaysunderthegravitationalin-
fluenceof themoon,whilein theVoicemodel,
thevehicleis attractedbythemoononlywhenit
is withinthelunarvolumeof influence.Thus.the
vehicle velocity relative to the moon at pericynthion

will be higher for the former case. A better ap-

proximation for A V can be obtained if the Jacobi
integralcalculation {Eq {76}, Chapeer lid is in-

corporated in the Voice program. The values of

AV obtained by this method are higher than those
from the integrated program but closer in magni-

tude than those obtained from the Voice program

alone. Also, this method requires only a single

additional computation whereas several trajec-

tories must be calculated by numerical integra-

tion if the restricted three-body force model is
used,

One result of considering finite burning time

effects rather than impulsive values of &V is that

hpL of the translunar trajectory will normally be

2 to 4 km higher than the lunar orbital altitude, h 0.

T > 0.2, the gravity losses for this ma-
Nor

neuver are negligibly small.

For the case of one-way trajectories, i.e.,
translunar-to-hnar orbit or hnar orbit-to-trans-

earth (Chapter IX), the values of the required AV

vary over a larger range, since one set of con-

straints (either at the earth or at the moon) is re-

moved. Figures 8 and 9 present the requirements

for injection into a circular lunar orbit at an al-

titude of 185, 2 km from a translunar trajectory

using an impulsive maneuver. These figures dif-

fer from Fig. 7 in that hnar orbits with particu-

lar inclinations i m and descending nodes 0MT L

are shown, while in the latter figure, these mis-
sion constraints were not indicated. As will be

discussed in Chapter IX, this data can be used

equally well for injection from a lunar orbit into

a transearth trajectory by a slight change of no-
tation.

Figure 8 is for i m = 2 ° . This low inclination

of the orbit results in almost equatorial lunar or-

bits with a maximum i 0 = 8.7 ° due to the lunar

librations in latitude which amount to 6.7 °. In

addition, the translunar trajectory inclination

iVT L is limited to a range of 30 ° , and _MTL

varies from 60 ° to 180 ° . However, these values

shown in Fig. 8 can be extended due to symmetry
about the MOP as discussed further in Section A

of Chapter IX. The minimumAV for orbit entry
isAV = 770 in./sec, for a transfer time about

twice the usual transfer time of 60 hr.

In Fig. 9, i m = 15 °, and a wider range in all

trajectory parameters is available. The maximum

i 0 is 21.7 ° and iVT L as well as 0MT L is only re-

stricted by the desired flight time and the avail-
able AV.

Additional plots for higher values of i can
m

also be obtained with corresponding increases in

the ranges of the lunar orbit and trajectory param-
eters.

The lunar orbit parameters referred to above

(im and 0MT L) are not defined directly with re-

spect to selenographic coordinates, but rather

with respect to coordinates referred to the MOP

and the earth-moon line. Thus, to tie these or-

bits to ground traces on the lunar surface for a

specific lunar mission date, a coordinate trans-
formation must be made to obtain the seleno-

graphic latitude and longitude.

Figures 8 and 9 do not take into account the
variation in the earth-moon distance or the varia-

tion in velocity requirements for lunar orbits

higher than 185.2 km. A correction ofAV = ±30

m/see must be made for distances other than the

average earth-moon distance (60 ER). The higher

the lunar orbit, the lessAV is required to enter

it. For h 0 = 5500 km the saving may be as high

as 275 m/see.

D. LUNAR ORBIT DETERMINATION

SCHEMES

After a lunar vehicle (either manned or un-

manned) has been placed in a lunar orbit, some

means must be provided to determine the ac-

curacy of the actual orbit achieved. This deter-

ruination is important both for a reconnaissance

mission and a lunar landing mission, since in both
cases the location of certain lunar landmarks

relative to the orbit plane is of the utmost im-

portance. If the actual orbit differs much from

the planned one, some corrections must be ini-

tiated in order to fulfill the mission objectives.

Lunar orbit determination schemes are simi-

lar for the manned and unmanned missions in

that they both employ a combination of earth-

based tracking facilities, instruments located in
the vehicle, and possibly beacons on the lunar
surface. However. for manned lunar missions,

the primary responsibility for orbit determina-

tion will lie with the men in the space vehicle.

For a manned lunar mission, the essential in-

struments that will be required are the following:

(1) Horizon scanner (utilizing Doppler radar).

(2) Radar altimeter.

(3) Sextant.

(4) Clock.

A local vertical can be established with the

horizon scanner, and thus measurements of the

vehicle,s orientation with respect to it can be

made. By the use of the radar altimeter, an

altitude-time history of the orbit is obtained.

When the vehicle is over the lighted side of the

moon, the horizon scanner and the sextant can be

used in conjunction for angular readings between

a star and a landmark on the moon. A similar

measurement can be made between a star and the
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local vertical when the vehicle is over the unlighted

side of the moon. The period of the lunar orbit

can be calculated by measuring the occultation of

a star by the moon with the aid of the clock.

Since the orbital elements are not constants

but will be continuously changing due to the

triaxiality of the moon and the gravitational at-

tractions of the earth and the sun, these readings

by themselves wi11 be useless. Therefore, some

scheme for combining the individual instrument

readings for determining the present and for pre-

dicting the future orbit of the space vehicle must

be devised. One such method which will be de-

scribed here is based upon a scheme used for

midcourse guidance corrections.

At an arbitrary epoch (e.g., time of injec-

tion into lunar orbit), the position and rotational

orientation of the earth and moon relative to the

stars will be determined precisely. The position

and velocity of the vehicle relative to the seleno-

centric nonrotating coordinate system (x¢ Y¢,$

; x¢, _ , {_ ) are assumed known at this time.Z_

Later several instrument readings (_R(t) are

taken. Using the assumed initial conditions and

the equations of motion for a lunar orbit, the ve-

hicle,s position and velocity at the times of the

readings are calculated. From these coordinates,

it is possible to determine what the readings would

have been (_c(t)) under these assumptions. The

differences between the actual and calculated

readings are then found:

Act = Crc(t) - erR(t) (46)

There will be a set of these equations for each of

the times that the readings are taken.

This process is then repeated for each set of

assumed initial conditions except for a change in

each one of them, e.g., x_ +Axq, y_, z_; x{,

y{ , zq, etc. The differences in the actual and

calculated readings are then expressible in terms

of changes in coordinates by:

0_. 8a. 8a.

= i Ax_ + l i Azq
A_ i _ y_ Aye + a--_-_

3(_. 8(7. 3(_.

1 A_ + l . _ ZX_( (47)+

where i denotes the i-th instrument reading.

Utilizing a least squares technique which min-

E (Aai)z, Eq (47) isimizes the differences

solved forAx_, Aye , AZ_I; Zk_, /X:_¢, andA_.

Thus, a set of initial conditions which when used

with the equations of motion yield the best results

consistent with the actual readings is obtained.

These results might be improved by several re-

finements--using a more detailed set of equations

of motion, including statistical and instrument

errors in the calculations, and using a more re-

fined smoothing technique which weighs each of

the readings differently.

For an unmanned lunar mission, orbit deter-

mination will be primarily based on data obtained

by DSIF (Chapter VI). This system will be able

to obtain the orbital altitude by knowing the pre-
cise location and dimensions of the moon. The

orbital period will be calculated by adding the

time the vehicle spends behind the moon to the

time it is observed by the tracking facilities.

Automatic equipment which might be included in
an unmanned vehicle are a star tracker and a

radar altimeter. These will give additional values

of the orbital period and altitude.
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VIII. DESCENT TO AND ASCENT FROM THE LUNAR SURFACE

A. INTRODUCTION

The landing of a space vehicle on the surface

of the moon in general involves retro-rocket

deceleration to significantly reduce a relative
vehicle approach speed which is on the order of

3 km/sec. The degree of reduction required and

the techniques for achieving this velocity reduc-
tion are different for high-speed hard landings

than for soft-landing instrument carriers and
manned vehicles. Two main classes of ascent

and descent trajectories may be distinguished:

(i) Direct ascent from the lunar surface

into a transearth trajectory or direct

descent from a translunar trajectory
to the lunar surface.

(2) Ascent to a lunar satellite orbit prior

to entering a transearth trajectory,
which will be referred to as indirect

ascent, and descent from a lunar

satellite orbit after entering the lunar

orbit from a translunar trajectory,
which will be referred to as indirect

descent.

Although the direct case is straightforward

and requires little explanation, various approaches

are possible for achieving indirect ascent or de-

scent, and these approaches are worthy of note.
In the direct case, of course, the entire space

vehicle, which is called landing module (LM),

together with any related modules, descends

from the translunar trajectory by use of one or

more rocket deceleration phases to the lunar
surface. On the other hand, in the indirect case,

the space vehicle, on nearing the moon, is in-

jected into a lunar satellite orbit. After this

orbit is adequately determined, the indirect

descent may proceed in either of two ways:

(1) The vehicle separates into two modules,

one containing the propulsion system

and return spacecraft for the return

trip to earth and the other comprising
a shuttle. The shuttle vehicle is a

minimal vehicle which is capable of

being landed on the lunar surface; it
can be used as a base for explorations,

and it can be launched for a rendezvous

with the return space vehicle, which has
in the meantime remained in lunar orbit.

(2) The entire orbiting space vehicle, in-

cluding propulsion systems and fuel

supply for the return to earth descends

to the preselected point on the lunar

surface. The portion of the vehicle
which descends to the surface of the

moon is known as the landing module

(LM).

Both indirect approaches offer the advantages of

greater flexibility in landing site selection and a

longer period for final orbit determination. The
shuttle approach offers the further advantage of

smaller fuel requirements, since parts of the

LM may be abandoned in lunar orbit, but it

requires more complex space vehicle systems

due to the rendezvous requirement after ascent.

All data presented in this chapter is based on
the assumption of a moon which is the only celestial

body affecting the trajectory, which is symmetric in

spherical layers and without an atmosphere. Thus

all ballistic trajectories are Keplerian orbits.

These assumptions are justified, since the short

time spent during ascent and descent keeps the

secular perturbations, which are neglected by

making these assumptions, quite small.

Specific areas considered in each class of lunar
ascent and descent trajectory include propulsion

system requirements, types of trajectories, abort

capabilities, guidance laws and control system

requirements. The lunar ascent and descent

phase of an impact probe or lunar landing mission
can be further classified into such subphases as

descent braking, hovering and translation prior to

landing, launch from the lunar surface, and rendez-

vous (if required) with a lunar satellite vehicle.

Each phase will be discussed separately. Mate-
rial related to lunar ascent and descent is given

as follows: Injection requirements for moon-to-
earth transfer are noted in Chapter IX, trajectory

computation for the principal moon-to-earth or
earth-to-moon transfers is considered in Chapters

IV and VI, and some aspects of deorbit require-
ments are covered in Chapter VII. Keplerian

orbit data is given in Chapter III of Ref. 1 in

analytical and graphical form.

B. DESCENT TO LUNAR SURFACE

1. Direct Descent

Impact velocities with which an unretarded
landing module (LM) strikes the moon vary from

about 2.5 km/sec to 3_2 km/sec for typical earth-

to-moon transfers. This terminal velocity (or

unretarded impact velocity) is plotted as a func-

tion of transfer time in Fig. 1. Since the termi-

nal velocity is equivalent to the velocity impulse

required to stop the vehicle just before impact,

it represents a lower bound on the velocity decre-

ment required to decelerate and soft-land a vehicle

with rocket burning. The actual deceleration or

braking of the vehicle requires finite burning time

and more fuel. Soft landings are characterized

by impact velocities on the order of tens of meters

per second. The degree by which the terminal

velocity must be reduced by rocket braking de-

pends on the nature of the mission.

a. Terminal velocity requirements

The greatest reduction in terminal velocity is

required for manned vehicles. In this case im-
pact should occur at less than about 5 m/sec

(without shock absorption) so that the maximum

impact deceleration be less than 15 geo • For

many instrument carriers, the soft landing re-

quirement may be relaxed to several hundred geo'

resulting in a simplification of the landing guid-

ance and control system. These missions may
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employmechanicalor fluid shockabsorbersor
gas-filledballoonsto reducedecelerations,but
retro-rocketswill still berequired. Reference2
estimatesthata 200newtonpayload,if slowedby
retro-rocketto animpactspeedof about100m/sec,
couldbelandedbya collapsingballoonsystemwith
decelerationof 200g@o" References(3)and(4)
considerstressesandpenetrationswithhard
landings.Instrumentpackagesmaybemounted
ontopof highstrengthpenetrationspikesto avoid
topplinganddamage.Figure2showsthepenetra-
tionof arocksurfacematerialbyacylindrical
bodywitha conicalnose. TheempiricalPerry
formulahasbeenusedto obtainthepenetration
depthsplottedinFig. 2:

W
P =K _ f (Vi) (i)

where

P =maximumpenetrationdepth
K = a constantvaryingwithmaterial

andprojectileshape

W = weight of projectile

D = diameter of projectile

f (V i) = a function of impact velocity

The maximum resistive pressure associated with

this penetration is plotted in Fig. 3. This pres-

sure is independent of projectile weight. Both

figures employ the compressive strength of the

rock as a parameter, thus avoiding a specifica-

tion of the type of lunar surface. Although opin-
ions still differ as to the nature of the lunar sur-

face, the primary surface material is rather thought

to consist of porous rock than a thick dust layer

(Ref. 5). At any rate, even for lunar probes,

impact speeds should be reduced by retro-rockets
to at least 100 m/sec for most payloads.

b. Braking technique

Direct descent braking is, then, a matter of

reducing impact velocity from about 3 km/sec to

less than 100 m/sec. The braking could be done

most economically by applying maximum thrust

over a minimum burning time in order to reach

zero velocity just at the lunar surface. In the

limiting case, the most efficient braking tech-

nique would apply, just before impact, an im-

pulse equal in magnitude to the impact velocity.

Of course, optimization based on the sole cri-

terion of fuel economy results in a system re-

quiring tolerance to high decelerations and

stringent guidance and control system perform-

ance. Design of the lunar landing system must

be based on a compromise between fuel economy

on one hand and low decelerations and a simple

guidance system on the other hand.

A braking technique for direct descent which

achieves such a compromise might have the fol-

lowing qualitative characteristics: In the initial

phase of the approach, which comprises the

principal part of the landing trajectory, a high

constant-thrust stage is employed to reduce

approach velocity significantly. During this phase

only very crude guidance will be required. (The

midcourse translunar guidance must achieve
accuracies of the order of a few m/sec to assure

impact, and errors of this order in the early
braking phase can be tolerated. ) A second phase,

in which a variable thrust engine relying on ac-
curate local velocity, altitude, and attitude sen-

sors cancels the remaining velocity, must be

initiated at a sufficiently high altitude to provide

time to eliminate trajectory errors before touch-

down. In manned missions this phase will prob-

ably terminate in a period of hovering and trans-

lation. Fuel economy of the vernier rocket is

improved with increased throttleability, or range

of thrust at which the engine can operate. The

initial phase of constant-thrust burning could be

accomplished in several periods of burning sep-

arated by a ballistic trajectory, although some

means of attitude control is required at all times.

The use of several periods of burning appears to

relax certain guidance system requirements, but

involves a more complicated propulsion system.

c. Direct descent trajectory analysis

All braking techniques considered for the
descent phase must be evaluated in terms of fuel

requirements, decelerations, complexity of the
guidance scheme and similar parameters which

can be obtained from the trajectory of the vehicle.

The following sketch shows some typical ballistic
lunar impact trajectories (i. e., those with no

rocket braking in the vicinity of the moon) in the

MOP which were obtained by use of the restricted
three-body force model:

All strike the moon on the ascending arm, they

leave earth direct, and the difference in injection

velocity near earth between the outer trajectories
on the sketch is approximately 25 m/sec.

In analyzing descent trajectories with rocket

braking, or trajectories in general, analytic

solutions are useful and desirable in that they
show trends and provide a check on subsequent,

more accurate, numerical solutions. On the

other hand, these analytic trajectories may be

unrealistic due to the restrictive assumptions

that had to be made. The following assumptions
underlie the simplest physical model which can
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be used for analytical direct descent trajectories: gl = average gravitational acceleration
during braking

(i) The descent is vertical to the surface

of the rnoon.

(2) The moon is homogeneous in spherical

layers.

(3) The lunar gravitational acceleration is

constant during the braking phase.

(4) Drag forces are neglected.

(5) The mass flow rate and exhaust velocity

of the braking rocket are constant.

(6) The vehicle is a point mass and its

attitude does not influence the trajectory;

the attitude is only important in the cor-

rect aiming of the rocket engine.

The first assumption is justified for preliminary

analysis since some typical direct descent tra-

jectories approach the moon vertically, or nearly
vertically, as can be seen from the preceding

sketch. In addition, data generated from the

vertical trajectory analysis is useful in describ-

ing off-vertical trajectories as long as thrust and

vehicle velocity are colinear. The second assump-

tion is quite reasonable, as can be seen from the
lunar data in Section A of Chapter II, and it allows

the treatment of all vertical trajectories as simi-

lar, regardless of the landing site location. Ac-

tually the first assumption implies the second.

Concerning the third assumption, no serious

inaccuracies result in the data if average values

of gravitational acceleration are taken in each

braking phase, especially when the altitude range

during one braking phase is small compared to

the lunar radius. Assumption (4) is certainly

valid since the lunar atmospheric density at the
-12

surface is probably less than i0 of the sea

level density of the earth's atmosphere. Assump-
tions (5) and (6) are the usual ones for a pre-

liminary trajectory analysis. Furthermore,

descent trajectories are usually so close to the
primary body (in this case the moon) and of such

a short duration that the gravitational attraction

of other celestial bodies may be neglected.

With the foregoing assumptions, the equation
of motion for vertical descent to the lunar surface

with rocket burning becomes:

d2h dM -

M _ = - Vex -'di-- Mg¢
(2)

where

M = mass of the vehicle, M = M 0 : Mr,

M is a positive constant, M 0 the
initial mass.

= altitude of the vehicle above the

lunar surface

t = time

V = effective exhaust velocity of retro-
ex rocket (assumed constant)

Successive integration of Eq (1) and evaluation

of the boundary conditions,

t : 0: h : h 0, V = V 0

t = tb: h = hi, V = V 1

gives equations for the velocity and altitude after

any given braking phase, which can be expressed
in the form:

V 1 = V 0 + Vex n (1 - _) + -- (3)
g$0

v2 (hl = h0 + ex 1 (1 - _) In (1 - _)

g_ 0

+_
vo

1-%x
(4)

where

V 0 = vehicle speed (positive downward)
at retro-rocket ignition

h 0 = altitude above the lunar surface at
retro- rocket ignition

Vex = effective exhaust velocity of the
retro-rocket (assumed constant)

= mass ratio of retro-rocket

Wf 1VI

(_ = % = M_O tl)

T
-- = initial thrust-to-weight ratio using
W0 sea level weight at earth

W 0

%0

= earth sea level weight

= acceleration of gravity at the surface
of the earth

= average acceleration of lunar gravity

over the altitude range during braking

Less accurately, the value of gravityat the lunar

surface, gq0 will be used instead of gl in sub-

sequent calculations and figures on vertical de-

scent, For the case of one burning phase leading

to a soft landing with zero relative velocity to the
surface the end conditions are

t : tb: h = h 1 : 0, V : V 1 = 0

and, for this special case, Eqs (3) and (4) reduce

respectively to:
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vo - In (1 - _) + g_ 0
ex g_ 0

(5)

h0 ge 0

--2"-
V

ex

1 gq 0 _2]

+2 g_0 (

(6)

V 0

The nondimensional velocity parameter _ ,
ex

and the nondimensional altitude parameter,

h0g_0

------2--' are plotted in Figs. 4 and 5 as functions
V

ex

of mass ratio _ and initial thrust-to-weight ratio

T
If Eq (5) is solved for thrust-to-weight

ratio, and the result substituted in Eq (6), the

nondimensional altitude parameter is related to

mass ratio and nondimensional velocity param-

eter as follows:

IfV 2- = +In(1 - _ I - _ V-eex

ex

Since

=

(7)

Vex

T

g$0

Equation (5) can be used to relate burning time to

mass ratio and velocity at retro-rocket ignition
and define a nondimensional burning time param-

eter g_ 0tb by the equation:
-V----

ex

-Vex t.. ex
(8)

Equation (7) is plotted in Fig. 6, and Eq (8) is

plotted in Fig. 7.

Error relationships for vertical descent may

be evolved by taking differentials of Eq (3) and

(4), where _¢ has been replaced by g¢ 0" The

results are as follows:

I g,0 -4%'1dV 1 = dV 0 + In (I - _) + g@0
--

dV
ex

I_ 1 g_0 ___0) 1
+ Vex T-:-¢ + -

go0

continued

d_

dh I

g{o
-V

ex g@0 (W_0)

2 (h I - h 0)= dh 0 +
Vex

1

+ ,-TT-U,

(9)

v° 1+ _ tb dVex

(h o h I tb 2

V 1 Vex
+

T

g_0 (W_-O)

v
ex

where t b - ,T

g_o (_0-0)

d_ - tb dV 0 (10)

For the case of a single rocket braking period

to a soft landing with zero velocity, nominal values

are V 1 = 0 and h I = 0. Then

v0 [_ 1- +V
dV 1 = dV 0 _7_ex dVex ex

dh 1

d_

g¢0 g d

-Vex g@o (,.__T I _

_'o' (ll)

2 h 0 V 0

= dho+ (- _ex + _ tb) dVex

+ _ (h0 d

(_0 + tb2

-tbdVo, [VI =0, hl = O] (12)

De Fries (Ref. 6) derives results corresponding

to Eq (11) for the case of n thrust on-off periods,

i.e., n periods of constant thrust followed by

periods of ballistic flight. The assumptions are
the same as in the single-stage case. The value

of the acceleration due to lunar gravity for the

j-th powered phase is the constant value g_ j at

the time of rocket cutoff, while it is assumed

variable during the ballistic flight phases. The

error due to this assumption can be accounted

for by including lunar gravity as an independent
error source in the analysis. The results are

reproduced here for convenience, and the nota-
tion is illustrated in the following sketch.
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h_0 = initial altitude of the
J

j-th powered phase

V20
h_f = final altitude of thea

j-th powered phase

= initial velocity of theVj + I, 0 1)th72f (j + powered
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phase
o
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j-th powered phase
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The error analysis is made by using a Taylor

series expansion of the touchdown velocity (the

velocity at the end of the n-th coasting period.

which may be regarded as the initial velocity of

a fictitious (n + 1) th powered phase and is denoted

by V n + 1,0 ) involving only first-order terms.

Vn + i, 0 (hj0 + Ahj0' AVj + A (ZXVj), Tj

+ATj, g{j + Aggj, Vl 0 + AVl0)

= Vn + 1, 0 (hi0' Vj, Tj, g_j, V10 )

i OVn + 1, 0
+ ahj 0 &hj 0

j=l

i 3Vn+ 1, 0
+ a(z_vj) z_(z_Vj)
j=l

n

Z 3Vn + 1, 0+ aT. AT.]

j=l 3

n

aVn+ 1, 0+ a Age J
j =1 gqJ

0V
n+l

+ _I0 AVIo
(13)

where the partial derivatives are given as follows:

OV OV.
n+ 1, 0 _ j + 1, 0 1 (1

8hj0 3hj0 Vn + 1, 0

+ continued

AV

(j*n)

OVn + 1, 0 _ OVj + 1, 0 1

O &V. O AV. V
J j n+l,O

aVn)

1

(j *n)

aVn+ 1, 0 OVj + 1 0
= P

aT. aT.
J J

AV n .

- nV O)*

1

V
n+l,0

1

(j, n)

av
n+l,O _ avj + i,

agcj agtl j

AV n .

0 1

V
n+l,O

1

(j * n)

3Vn + 1, 0 aV20 1

OVIo "_-10 Vn + 1, 0

AV

_ n)

1

(j ,n) (14)

av
n+ 1,0 gfln

=

Ohno Vn + 1, 0

OVn + 1, 0 -Vnf
=

OAV V
n n+l, 0

(j = n)

(j =n)

av
n+l,O 1

aT = T--
n n

av
n+l,O

Oglln

a V20

V2g_ n Mon ex

Tn Vn + 1 L_ ex

i +e exj

1 I(Vn2g{n Vn + i, 0

- AVn)2 - V2f]

Vlo - AV I

V20

(j = n)

(j -- n)

(j = n)

where

= fvj+l,0 (n - j - 1 = 0)

+ 1. oTT (1 - AV'+m)

m = 1,2 ..... (n-j-l)
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denotestheproductoverm
M is theinitial massof thespacevehicleon

atthen-th poweredphase
Thederivativescanbeevaluatedfrom Eqs(3)
and(4), whichare thesolutionstothevertical
descentequationofmotion,withthesubscriptj
denotingthej-th phaseof rocketburning.

MOj - Vex 1 - e ex _

Vjf = Vj, 0 + g_j _

M0j Vex

hjf = h j0 - Vj, 0 ---T.
J

g_ J M0j2 Vex2 (1 -

2 2
T.

J

MOj Vex 2 -
+ T. 1 -e V--eex

J

AV. exj-wA e
ex

e ex ]

2

_ Avj \

eV)

AV.
3

[e  l+v;Vj+l, 0 = 2_ I
(15)

where M0j is the initial mass of the vehicle at

the j-th burning phase.

A complication is introduced when the as-

sumption of vertical descent is dropped since the

analytie solutions for descent trajectories com-

prised by Eqs (3) and (4), or (5) and (6), apply

only for vertical descent. The accurate solution

for nonvertical trajectories involves a numerical

approach, since the equations of motion are not

integrable in closed form. However, the vertical

descent solutions are useful, rather than good,

approximations for description of nonvertical

trajectories when altitude and velocity in the

vertieal ease are interpreted as range and range

rate. Accuracy of the approximation is inereased

if the thrust and vehicle velocity vectors are co-

linear during the braking phases of descent, so

that the trajectory is almost a straight line until

the very final, low-velocity phase, when the

trajectory curves over to the local vertical on the

moon. The sketch on page VIII-2 shows that bal-

listic trajectories approach the moon almost on a

straight line, since the maximum curvature of the

hyperbolic selenocentric approach trajectory is near

pericynthion, which is below the lunar surface for

impact trajectories.

The next step in the calculation of descent

trajectories would be the numerical solution of a

general two-dimensional descent trajectory. The

physical model implies that any phases of rocket

burning take place in a trajectory plane which at

the same time contains the center of the moon_

its trace on the lunar surface is a great circle,

and this model is compatible with the spherical

moon assumption. The standard inverse-square

variation of g_ with vehicle distance from the

center of the moon is assumed in two-dimensional

trajectories, thus retaining only assumptions (2),
(4), (5) and (6) of the ones listed on pages VIII-2 and

-3 for the physical model underlying two-dimensional

descent trajectory calculations.

Consider two coordinate systems in the trajec-

tory plane. One is a selenocentric system which

is regarded as inertial and has its origin at the

center of the moon, the Yt axis directed toward

the northernmost point of the trajectory plane

and the x t axis toward the ascending node in the

lunar equatorial plane. The second coordinate

system is a local one similar to the topocentric

system, but with origin at the instantaneous sub-

vehicle point and the y_-axis directed toward the

vehicle. Both coordinate systems, the unit

A

vectors a, v, and the forces acting on the vehicle

are illustrated in the following sketch (positive

values for all quantities are shown):

Yt

__v

x t

In inertial coordinates, the vector equation
of motion is

Mr t = _ + M g_ , (16)

where

T
M = M0 - V--

ex

tb = instantaneous vehicle
mass
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M 0 = constant vehicle initial mass (prior
to rocket burning)

= rocket thrust

Vex = effective exhaust velocity

t b = time of rocket burning

r t = vehicle radius vector

The digital computer usually integrates the scalar

equations of motion, which will be obtained next.
The components of the forces tangential and nor-

mal to the flight path (which is along the unit

^vector "r - , can be obtained from the preceding
sketch.

F r = T cos (0 - _) - Mg_ sin "_

F = T sin {O - _) - Mg_ cos

where

{17)

0 = thrust attitude angle (the angle between

local horizontal or x_-axis and the thrust
direction)

= flight path angle (the angle between the

local horizontal or x_-axis and the velocity
vector).

If these force components are further resolved

into the x t and Yt directions, one can write the

scalar equations of motion

x t = cos "lt T cos (e - _/) - g¢ sin

-sin _/t I_ sin(e- _/)- g q cos _/I (18)

°.

Yt = sin _t I_ cos (0 - "_)- g_ sin_/1

+cos _t I_-i sin (0 - _) - g_ cos _ 1
(19)

where

= inertial flight path angle (for angle

between the x t - axis and the velocity
vector)

= _-_

These differential equations are integrated to

solve for x t and Yt' which in turn are integrated

to solve for x t and Yt" The following auxiliary

definitions are of interes_ and they are usually

computed for each trajectory printout interval.

xt _t2V = + , the selenocentric (inertial)

velocity of the vehicle

/

r = ,_xt2 + yt 2 , the distance of the vehicle
from the center of the moon

yi- h = r - Rq, where Re is the radius of the

spherical moon

tan-l(Xt_

YI = tan-l(Yt/

\xt /

_/ = sin -1 (YtYt + xtxt)
rV

In some cases it is convenient to write the

component equations of motion tangential and

normal to the instantaneous flight path. If we

^ V
define a unit vector -r = _ tangential to the

/%

flight path and define a unit vector _ normal to

_he flight path, the velocity is by definition

r t = V = V_, and the acceleration is given by

r t = Vr + Vr = Vr V_tcr .

Thus the tangential and normal scalar equations
of motion become

v = F , V_ t = -F , (20)

where F and F are given by Eqs (17).
"r O-

Once the range of possible trajectory param-

eters for the direct descent trajectory has been
narrowed down, and the landing area has been

selected, some typical precision trajectories
should be calculated. The vehicle can now move

in three dimensions, and the most accurate values

are used for the physical constants. This would

result in lifting the assumption of a moon homo-

geneous in spherical layers, but using a moon

homogeneous in ellipsoidal shells. The buildup

and tailoff of rocket thrust in a given burning

period can also be simuIated, and any lateral

maneuvering which can reduce the hovering and

translational requirements on the LM can be

introduced into the computer simulation.

The equations of motion in selenocentric lunar

equatorial coordinates x_ y_ z d (assumed inertial

for this ease), including the triaxially ellipsoidal

shape of the moon, are given in Chapter VII.
T T

Thrust accelerations add terms ___x
T lvI

Z

to the equation of motion in the xff , yq , and

z(_ directions, respectively. The transformations

of T x, Ty, T z to components T u, T v, T w, which

are in a coordinate system x v, Yv' Zv' are given

in Chapter IV-B-4 e (the only change in the trans-

formation equations is a formal change of the @-

symbol to the t%symbol). This coordinate

system has its origin at the center of gravity of the
vehicle, the z -axis in the direction of the radius

v

vector, the x -axis in the general direction ofv

motion in the trajectory plane but perpendicular
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to zv, andtheYv-aXisperpendiculartothetrajec-
tory planeto completetheright-handCartesian
coordinatesystem.

d. Trajectoryoptimization

Theprevioussubsectiondescribedthephysical
modelsandthecorrespondingequationsof motion--
thetoolsofthetrajectoryanalyst. In orderto
obtainaparticularsolutionto theequationsof
motion,or atrajectory, furtherinformationis
needed,for example:the initial conditionsfor
descent(position,velocity,vehiclemass)must
beobtainedfrom translunartrajectories,the
characteristicsof therocketengineandthefuel
mustbespecified,andtheimportantquestion,
"Howshouldthespacevehiclebesteered,or, what
is thevariationof thrustattitudeangleewith
timeduringrocketburning?"mustbeanswered.
Sincethereareaninfinitenumberofpossible
trajectoriesbetweentheinitial positionand
velocityfor a directdescentandthefinal lunar
landingsitepositionandtouchdownvelocity,the
numberof trajectoriesanalyzedmustbereduced
drastically. This leadsnaturallyto a problemof
trajectoryoptimization:whattrajectorymaxi-
mizesor minimizessomecriterion ofperformance
Q, whereQmightbethefuelexpendedduring
descent,payloadonthelunarsurface,cost, etc.?
Ofcourse,the lunardescentphasemustbein-
tegratedwiththeothertrajectoryphasesofthe
particularlunarmission.

Optimizationproblemsmaybeclassifiedinto
twocategories:

(1) Pure trajectory problems, where all

vehicle and rocket engine characteristics,

such as initial weight, thrust, etc., are

specified and the trajectory that optimizes

some aspect of performance is sought.

(2) Space vehicle design problems, where the

mission is specified, and payload weight,

landing site location, rocket engine and

fuel characteristics or similar parameters

are sought.

Various trajectory optimization schemes,

primarily based on the calculus of variations, the

method of steepest descent, Pontryagin' s maxi-

mum principle or dynamic programming have

appeared in the literature. A general approach

will be outlined in Subsection B-2e and applied to

the case of descent from lunar orbit. Although

this approach could also be used in analysis of

direct descent, the discussion of this optimization

scheme will be deferred until later, and only re-

sults of two simpler approaches, one a space ve-

hicle design problem and the other a trajectory

problem, will be given here for nominally vertical

trajectories.

Reference 7 treats a space vehicle design
problem. In it are treated the optimum thrust-

T

to-mass ratios f0 = _0 for the simple, vertical

descent with one burning phase to a soft landing

at zero touchdown velocity under the assumption

of constant thrust and constant gravity (the

trajectory of Eqs (5) and (6)). A further assump-

tion is that the total mass of the propulsion sys-
tem M (mass of tanks, thrust chamber, propel-

P

lant reserves, plumbing, etc. ), can be expressed

by the linear form

Mp = A + BMf + CT (21)

where

Mf

A

= total propellant mass

= fixed propulsion system mass, i.e. ,

the mass that does not vary with engine
size

B, C are constants of proportionality, where

B = ratio of the propulsion system mass that

depends on Mf (or the propellant scalable

system mass) to Mp

C = ratio of the propulsion system mass that

depends on T (or the thrust scalable

system mass) to Mp

T = thrust.

The constants A, B and C are rocket engine

design parameters. Figure 8 gives the optimum

in terms of a nondimensional impact velocity
V.

1
parameter V---' where V i is the ballistic lunar

ex

impact velocity given in Fig. 1 as a function of
transit time, and in terms of the nondimensional

propulsion system parameter [(g# 0C)/(1 + B)].

The region of the parameter g¢0C/(1 + B)for

liquid propulsion systems is shaded in Fig. 8.
The parameter C is smaller for solid rockets than

for liquid systems because the solid rocket sys-

tem mass is largely dependent upon the propellant

mass and not too dependent upon thrust level.

Therefore, payload acceleration tolerances would

generally be exceeded if the optimum thrust for

solid rockets were chosen. Figure 9, also from

Ref. 7, shows the penalty in payload weight resulting

from braking at other than optimum thrust level.
For typical impact velocities, the payload is not

too sensitive to changes in thrust-to-weight ratio.

Reference 8 outlines an optimization procedure

for a trajectory problem based on a two-engine

braking system. The basic braking technique to

be optimized is chosen for simplicity and relia-

bility as follows. A high constant-thrust, solid-

propellant engine provides the major portion of
the braking. After main retro-rocket burnout a

variable-thrust, liquid-propellant engine reduces
the remaining velocity before impact and corrects

for dispersions in altitude and velocity at burnout

of the solid engine: The nominal program of this
vernier engine involves a descent at minimum

thrust until sensors reveal a velocity-altitude

combination which permits soft landing by maxi-

mum vernier thrust operation for the remainder

VIII-8



of flight. Basedonthis preliminarilydefined
brakingtechnique,theoptimizationis thencon-
cernedwithapportionmentofvelocityreduction
betweenthetwoenginessuchthattotalbraking
systemweightis minimized.Thetechniqueis
indicatedfirst in thecaseofverticaldescentand
thenextendedto off-verticalapproaches.The
numericaloptimizationprocedureis illustrated
in thefollowingsketchandmaybeoutlinedas
follows:

(i) From given main engine terminal con-

ditions and engine characteristics, a

dispersion ellipsoid in the h, V, Y space
is established.

(2) The computer then iterates to find the

point of tangency of this ellipsoid and a
surface of constant vernier fuel. This

point represents the maximum vernier

fuel required for the chosen nominal

burnout point.

(3) From the vernier fuel mass corre-

sponding to the tangent surface, the

total engine weight (vernier weight plus

main engine weight) is computed.

(4) Curves of main engine weight and vernier

weight as functions of nominal main

engine terminal velocity are generated

by repeated computer runs. The opti-

mum terminal velocity is then the one

corresponding to the minimum sum of
vernier and main engine weight.

h lg Constant
Increali /_vernier

-- ...I/fuel. loc;vernier fuel .

/ i _ --thruet trajectory
_inimum Terrier thrust

_ain engi_ V - trajectory

burnout

_speraion

ellipaoid

e. Guidance laws for direct descent soft

landings

From the trajectory analysis and optimization

phase of the design, one or several trajectories
will have been selected for the proposed direct

descent to the lunar surface. But how will the

vehicle stay on the desired trajectory? The

guidance, which is concerned with obtaining the

input information required for the desired tra-

jectory, such as altitude and velocity, and the
guidance laws, which are used to control the

vehicle so that it stays near the desired trajectory,

for direct descent trajectories form the subject

of the present subsection.

A multitude of guidance laws have been studied
in connection with the lunar landing mission. How-

ever, only a few laws can be considered here in

any detail. It is instructive to consider first a

few simple guidance laws which can be used in
connection with nominally vertical descent, the

case for which analytic approximate solutions

have been derived. These guidance laws for
vertical descent will be considered in this section;

a guidance law applicable to nonvertical trajectories

will be analyzed in detail in Sectio_ B-2d (dis-

cussing indirect descent) since typical trajectories
for ascent to or descent from a lunar satellite
orbit deviate further from the vertical than do

typical direct ascent and descent trajectories.

In the case of direct descent, guidance in the

early phases of descent may be relatively simple.

The system may consist of altimeter and horizon
sensor, and a constant-thrust rocket engine.

Velocity need not be measured during initial

braking, first because the velocity would have to

be controlled by midcourse guidance to a few

m/sec to avoid missing the moon completely and,
secondly, because accurate velocity determina-

tion might be difficult at high altitude. In the final

braking phase more refined guidance will be

required to eliminate trajectory errors before
touchdown. The altimeter must be supplemented

by a Doppler system in the vehicle so that both

altitude and velocity may be monitored. For this

final phase a variable thrust engine will be re-

quired to implement the guidance commands.

Reference 9 considers several guidance laws

for use in nominally vertical descent:

(1) Vertical channel

1 - bf 2

ac = 2 h - hf + g4 (22)

or

= + K(t) {h - 12 (anom - g{) (h - h f)a c ano m

where

(23)

a = command acceleration
e

= instantaneous downward velocity

[lf = desired final downward velocity

h = instantaneous altitude

hf = desired final altitude
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a = nominalacceleration
nON

K(t) = programmed gain factor

(2) Horizontal channel

w
VC

we

where

V V
W

= -f(t) V_ = - k rt

V v V v

=f(t) _ =k r-_

(24)

(25)

_vc = command pitch rate

=
_wc command yaw rate

V = velocity component along roll (thrust)
u axis

V v = velocity component along pitch axis

V w = velocity component along yaw axis

k = gain constant

rt = slant range along thrust axis to lunar
surface

Next, these guidance laws will be discussed. By
means of Eq (22), when a deviation from the nomi-

nal trajectory is sensed, the thrust is controlled

to produce a new constant acceleration trajectory
which terminates with the required final velocity

and altitude. That is, this guidance law is ex-

plicit; it does not depend upon storage of the com-

plete nominal trajectory. The law does not force

the vehicle to fly the nominal trajectory but simply

steers for the desired final values. It may be ob-
tained by integration of the equation of motion

during vertical descent, under the assumption
rT_

that and gq are constant:

F =- M (f - g¢) = M'l{ (28)

where

T

f = _- is the constant acceleration due to thrust.

From the conservation of energy

f F dh = change in kinetic energy

or

hf

.2M (f - g4 ) dh =_ M (h2 _ hf ) (27)

0

which become s

• 2 '2
1 h 0 - hf

f - g_ = g h 0 - hf

after integration over the indicated interval.

(28)

hf, hf

Descent

/ trajectory

/////////////////
Lunar Surface

The guidance law of Eq (23) is an example of
an implicit guidance law; that is, the vehicle

follows a nominal trajectory in the guidance

phase. A deviation of the actual velocity h from

the desired instantaneous velocity,

I .22 (ano m - g_) (h - hf) + hf , (29)

generates a command correction to the nominal

acceleration. This law forces the vehicle to

follow the nominal trajectory.

In the absence of errors, both laws would

produce identical trajectories. However, Cheng and

Pfeffer (Ref. 9) find that the closer adherence to the

nominal trajectory resulting from use of Eq (23) re-

sults in less variation in acceleration. When the LM

attitude is nearly vertical, the altitude h and altitude

rate }_ may be replaced by slant range r t and velocity

along the thrust axis Vu, respectively, in Eqs (22) and

(23), so that the raw data need not be transformed.

Equations (24) and (25) form a proportional
rate guidance law for horizontal maneuvers. The

angle between the velocity vector and the thrust

vector is used to generate angular command rates

Wvc and ¢0wc. The thrust and velocity are not forced

to be colinear throughout flight as in the case of

a gravity turn trajectory (Subsection C-2b), but

this situation is gradually achieved by touchdown
time.

2. Indirect Descent (descent from lunar orbit)

The direct descent method for achieving a hard

or soft landing will probably only be used for in-

strument carriers, since any failure in the rocket

braking system would result in a lunar impact

speed of about 3 km/sec for the space vehicle. In

contrast, the most commonly used descent tech-

nique for manped and even some unmanned ve-

hicles will probably use an approach or circum-

lunar trajectory for the translunar portion of the

flight. Of these two trajectories the latter

would be preferable, since any failure in the

rocket braking system would allow a ballistic

return of the vehicle to the vicinity of the earth.

Lunar descent from the approach and cir-

cumlunar trajectory is performed in two

stages--a braking from the translunar trajectory,
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whichis a hyperbolictrajectoryaroundthemoon,
to circularor elliptic lunarorbitsandsubse-
quentlya descentfromthisorbit tothelunar
surfacebytheentirelandingmodule(LM).
Thisapproachallowsmaximumflexibility in
choiceoflandingsite, sincewitha lateral
maneuverduringor subsequentto thebraking
intolunarorbit, anyorbital inclinationcanbe
obtained.Furlhermore,withadditionalfuel
consumption,the indirectdescenttechniqueal-
lowsmoretimefor observationsandcorrections
beforelanding. However,thetechniqueis more
complexthandirectdescentfromatranshnar
trajectory.

a. Descent technique

Descent from a lunar satellite orbit to a soft

landing on the lunar surface will probably involve

the following routine, although other techniques
are possible:

(z) In the shuttle concept, after separation

from the orbiting vehicle, the shuttle

vehicle experiences a retrothrust during

what will be termed the deorbit phase of

descent. Of course, this technique is
not restricted to the shuttle case but can

be applied to an indirect descent of the

entire vehicle. The deorbit maneuver re-

quires a velocity impulse of AV = i00 m/sec.

Lunar

gr-- satellite

..... t.nd: 1on

(5) During the final phase of descent, the

vehicle is capable of hovering and trans-

lation. This capability is discussed in

Section D below.

Since descent from orbit, or indirect descent,

necessarily involves curved, nonvertical tra-

jectories, the analytic trajectory solutions pos-
sible for vertical direct descent (Section B-Ic)

are useful as approximations no longer. All

indirect descent trajectories must be computed

by numerical integration of the equations of

motion. (Section B-ic includes various simple

forms of the equations to be integrated. ) Also,
guidance law for indirect descent must be more

general, and therefore more complicated, since

these laws cannot rely on approximations which as-

sume small angles between the thrust vector and the

local vertical. On the other hand, many ap-

proaches which will be applied to analysis of in-

direct descent are obviously applicable in the

cases of direct descent which deviate considerably
from vertical.

b. Indirect descent trajectories

Various factors prevent a general analysis

of descent trajectories. The number of param-

eters involved is very large (orbit altitude, de-

scent range, individual propulsion system specifi-

cations, vehicl.e weight, to mention a few). Even

after a descent technique such as the one discussed

in the previous subsection has been chosen for a

given mission, trajectories will differ somewhat,

depending on the choice of guidance law or pitch
program. Therefore, generality must be sacrificed,

and trajectories will be presented for a particular
hypothetical mission, a particular vehicle, and

for limited ranges of trajectory variables.

The particular case investigated is descent
from a circular orbit of 185.2-km altitude

Various trajectories were computed with a two-
dimensional point-mass trajectory program and

plotted in Figs. i0 through 14 for parameters
given in the following table. Nominally constant

pitch rates (@t = const) were used in generating

these trajectories.

(2)

(3)

(4)

Following deorbit the (LM) coasts in a bal-

listic elliptical trajectory to an altitude"

of perhaps 20 or 30 km.

A final braking phase reduces the LM

velocity to less than 50 m/sec by the
time the vehicle has descended to an altitude

of a few hundred meters.

During the terminal braking phase,

lateral velocity is reduced to zero and

the thrust vector is pitched over into a

vertical or hovering attitude.

Sample Braking Trajecto,'ies

Descent Range,

Figure T

No. W0

10 0.45
/

1[ 11 0.4 5

12 0,45

13 (I 45

0 45

%_ynchronous, or equal period, descent is discussed in Section

%
(de_)

90

180

Synchronous* 95

Synchronous 95

Synchronous 95

Initial Ferminal

Altitude, h(? Altitude, hf

18. 29 0 304

18 29 O. 304

18 29 O. 304

12. 19 0 3(14

27. 43 O. 304

Impulse !
I b
sp i

309

309

3c)9

309
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The ordinates for these figures give altitude

in km (left-hand ordinate) and the corresponding

time from braking ignition (right-hand ordinate).

Time increments are also indicated along each

curve by data points. For a given altitude or

time the four curves on each figure determine

the vehicle velocity magnitude, V; the local flight

path angle, Y; the range from braking rocket

ignition, and the pitch angle with respect to in-

ertial coordinates, 8 t, on the appropriate abscissa
scales.

c. Braking requirements

Figures 15, 16 and 17 summarize a para-

metric computer analysis of propulsion system

requirements for descent from orbit and, in

particular, for the braking phase. All of these

figures relate to descent from a 185.2-kin cir-

cular orbit, for which the braking phase tra-

jectories of Figs. 10 through 14 are typical.

Figure 15 shows a typical complete descent

trajectory. Figure 16 shows the characteristic

velocity, AV --- -Vex in (1 - _), required during

the braking phase as a function of initial thrust-
to-weight ratio for several descent range angles.

Synchronous

90

Whereas the _d = 90° and _d = 180° descents are

initially tangent to the lunar satellite orbit, the

synchronous descent (involving a coast phase of
the same orbital period as the lunar satellite

orbit) begins with a nontangential deorbit. This

factor explains the greater economy of the _d =

90 ° and _d = 180° cases as shown in Fig. 16.

Figure 17 shows the same functional relationship,

velocity decrement required versus initial thrust-

to-weight ratio, for various initial braking alti-

tudes for a synchronous descent. One curve for

a higher value of specific impulse is also included

for comparison. Figure 18 is a plot of the same

variables as Figs. 16 and 17, except that Fig. 18

includes the deorbit phase requirements in addi-

tion to those for the braking phase. The forms
of these curves indicate the existence of an opti-

mum thrust level for each set of nominal system

and orbit parameters from the flight mechanics

point of view.

d. Guidance law for indirect descent braking

Just as there is an optimum thrust magnitude,

there is also an optimum direction, and the guid-

ance and control system must keep the vehicle

reasonably close to this optimum for descent.

The control law (or guidance law) for descent
from lunar orbit should be as flexible, efficient,

as simple as possible, and should permit man-

in-the-loop operation for system reliability. A

predictive guidance technique, which has been

demonstrated in a simulation program (Ref. I0),

appears to fulfill these requirements very well
and will therefore be discussed in this subsection.

The guidance operational phase of the descent

from orbit described in Subsection B-2a begins

during the ballistic phase 30 sec before the brak-
ing thrust is initiated. During braking, the thrust
vector must be controlled in such a manner that

the range and range rate go to specific values

simultaneously. The thrust magnitude should

experience as small a variation as is practical

to minimize the requirements for engine throttling.
Fuel consumption must not be penalized by the
thrust vector control.

These requirements are not compatible. For

example, minimum fuel consumption dictates

constant thrust (Ref. 11), but range control dic-

tates variable thrust. Again, minimum fuel con-

sumption with a range restraint dictates a compli-

cated thrust vectoring system, whereas the guid-

ance information must be displayed simply to
reduce human reaction time. There are other

conflicting requirements. The predictive law

selected represents a reasonable compromise.

Lawden (Ref. 12) has noted that an extremum of

a payload function is obtainable for a point parti-
cle in a constant gravitational field with mass a

function of time, if the thrust vector direction

in the two-dimensional case is represented by

the time-dependent bilinear function of the form

a - bt
tan 0 t = _ (30)

where O t is the thrust vector angle in an inertial

two-dimensional coordinate system. Fried

(Ref. 13) has shown that d = 0 if range is unre-
strained, and Perkins (Ref. 14) has indicated

that the law (30) is applicable to a braking type
of maneuver. It can also be shown that another

form similar to Eq (24) is obtained when a three-

dimensional trajectory is considered, and the
thrust vector is resolved in two directions. The

thrust in this discussion is assumed to act along

the longitudinal or roll axis of the vehicle.

Consider any set of orthogonal Cartesian axes

xt Yt zt and a rotation about one of these axes to
! I

form a new Cartesian set x_ Yt zt " Define a
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rotation about the zt-axis as yaw angle _t' a ro-

tation about the zt-axis as pitch angle @t and a

rotation about the xt-axis as roll angle @t" Next

consider a three-dimensional lunar landing tra-

jectory.

A notable eharacteristic of solutions for a and

b in Eq (30) is that the product (bt) is generally

small for braking trajectories in selenocentrie

space and with initial deeelerations greater than

5 m/sec 2. With this observation, it is possible

in a first approximation to linearize the pitch angle

@t and the yaw angle _t:

= 0t0 + btt0t

(30a)

t = Ct0 + _t t

Therefore, in a first approximation, an Euler

angle program having constant first derivatives

represents an efficient thrust vector control.

Furthermore, the requirement that range and

range rate be driven to specified values simul-

taneously is satisfied in two of the three dimensions.

The third (longitudinal range) is satisfied if the

thrust magnitude and ignition point are allowed to

vary within specific bounds to accommodate errors

in ignition time and system performance. Finally,

an Euler angle program of this form is quickly

assimilated and understood by a human pilot.

Solution of the differential equations of motion

for guidance purposes needs to be only approxi-

mate, provided that the solution is convergent.

That is, as the vehicle approaches the target, it

becomes more accurate. It is necessary that the

initial inaccuracies do not jeopardize the later

stages of the trajectory. In addition, the pre-

dictive system exhibits a closed-loop response,

so that inaccuracies due to constant errors or com-

putational roundoffs are driven to zero.

The differential equation of motion in vector

notation is

=_ __ T (31)d 2 r 6 r" + "_r

In development of the prediction equations, the

following approximations can be made:

(1) Thrust and mass flow are constant.

(2) The vehicle behaves like a point mass.

(3) The change in -,3- is small when com-

T r

pared to _ •

For these assumptions, Eq (25) becomes

( dt+ (31a 2 %- Mt

where

= = constant• (31b)

This form of differential equation is amenable to

solution by the method of variation of parameters.

A complementary solution is:

% = C1 sin got + C2 cos cot

where C'I and C'2 are constant vectors

(32)

The particular solution has the form

r =X(t) sin _t+ B(t) cos wt (33)
P

The three dependent variables, r_ /k and

must satisfy Eqs (3 I) and (33) and one additional,

arbitrary condition which will be imposed. Dif-

ferentiation of Eq (33) gives

dr
- Aco cos _t B_ sin _t + A sin _t _ B cos _t

dt

The third arbitrary condition may be specified as
2, ".

A sin_t +B cos _t _ 0 (34)

so that

-- = _ cos _t - B co sin ,,t (35)
dt

Differentiation of Eq (35) and substitution of Eq

(33) gives

d2r " .
- _ r + A cocos _t - B co sin cot (36)

dt 2-

which, with Eq (31), reduces to

T (37)
A_cos_t - Bco s_ncot =

Simultaneous solution of Eqs (34) and (37) gives

.X
T

A = _ cos got (38)

T
B = _-_- sin got

Then the solution becomes

0

#0 T dt)sin T+l ( + w eos_t
gO

0
(39)

:0 T dO;'-- ( + We°sgOt
0

COS gOt

- (_r"O - ,._ _singOt dr)singO7

0

where T denotes the final time•
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For the case of short burning times,

sin cot _ co7

cos .T-_ 1

and Eq (39) reduces to

0cos - tdt + (r 0+ dr) T
0 0

(%0)

r2 r 0 + -_dt - (r 0 - tdt) _o2r

0 0

Equations (40) are the approximate prediction

equations in this explicit guidance law. The com-

ponents of the thrust vector _ in the x t Yt zt co-

ordinate system at any time t are:

Tx(t) = W(t)cos (@t + _t t) cos (d2t + St t)

Ty(t) = T(t)cos (Ot + i t t) sin @t + _t t) (40a)

Tz(t) = T(t)sin (O t + 8t t)

If the thrust is assumed constant, and i t and S t

are assumed to be of the same order as ¢o, approx-

imate analytic solutions for A and B may be de-

rived. To the first order in _t, the components

of A and B in the x t Yt zt coordinate system are:

Ax _ _ 1 cos e t cos 02t - J2 (0t sin 0 t cos qJt

+S t sin qJt cos 0t) 1

A =1 IJy _ 1 c°s etsin_t - J2 (0tsin0tsinq_t

- StcosqJt cos 0t) 1

Az _ 1 sin Ot + J2 0t cos e t (40b)

Bx = J2 cos 0 t cos qJt - J3 (0t sin 0 t cos_t

+ qJt sinq_t c°s 0t)

By = J2 cos 0 t sin_ t - J3 (_t sin0 t sin_ t

- $t cos q_t cos 0 t)

Bz _ J2sin0 t + J30tc°s 0 t

where

J1 = - Vex In (1 - _)

t _)
J2 = -_ (J1 - Vex

V

= t _ ______tiC;)J3 -_ (J2

V = T__ is the effective exhaust velocity
ex M

_-__Mt ts the mass ratioM

The commanded pitch, pitch rate, yaw and yaw

rate for the bilinear guidance law, 0tc, etc, _tc

and qJtc' can be determined explicitly:

sin 0tc =

J3
_A B

z_ 2 z

J3

Jl J22 - J2

B - J2sin0tc

Ot c = z
J3 cos Otc

1
sin _tc =

co_d_-6tc

J3
_A -]3

y_ y

J3

J1 ]22 - J2

(40c)

_oA + (0tc J2sin0tc - JlCOS0tc) S[n_t c

kbtc = Y
J2 cos 0tc cos qJtc

where _ and t can be computed from the following

empirical approximations, with the subscript k
denoting the value at a given time t:

_ = 1 - exp V 1 ( S +2g o V+----4-_k j ;

(V + V k) > 0 (40d)

t ----

I $21 1

with

1

(40e)

The function K k depends on its value at the preced-

ing step, Kk_l, and can be computed from the fol-

lowing relation:
_ 1/2

K k =( Splp "_Splp ) Kk_ 1 (41)
S" S

where the predicted slant range vector is

Spl p = r- rpl p

With a pilot in the loop, the equations for t and

K k are not required• The pilot performs the same

function as these equations by manipulating the
throttle.

During the manual mode, the predictions are

acted upon directly by the pilot. He does not use
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theangles@tcand0tc' or _tcand%tc'buthesees
theeffectswhichtheinstantaneousvaluesof et, 0t'

i t will haveontheterminal(or landing)condi-@t'
tions. Then,usingtheappropriatecontrol, he
adjustshisattitudeuntil thepredictionis favor-
able. Thus,ina sense,thepilot is solvingfor
thecorrectattitudesandattituderatesbytrial
anderror byuseof thepredictivedisplays.

In theterminalphase,as in thebrakingphase,
provisionmaybemadefor bothautomaticand
manualcontrol. A guidancelawfor theterminal
phase(Ref. 15)is

st)
L-I = gq 2 K1 - K2 S (42)

h

1:1, (1 +_00)

where

Re

s

= central body radius vector to landing
site

= slant range vector from target to vehicle

K 1, K 2 = thrust sensitivity coefficients

The capability of the guidance law has been

tested in a lunar landing simulator which required

a total of 294 operational amplifiers, utilizing
four Reac C-400: Two Reac C-100 and an ex-

panded EA 231R analog computers. Fuel consump-

tion during the manual braking runs was generally

within two percent of that required for an identical

automatic run. Pilot displays are so simple for
the predictive law that, in most cases, a "safe"

flight was flown on the second or third attempt.

The pilot's performance was best when augmenting

the automatic system, and his inclusion, in gen-

eral, improved the total system performance. In

some cases, with marginal initial conditions, the

pilot was able to recover control and save the ve-
hicle in a situation in which use of the automatic

system would have resulted in an impact.

e. Trajectory optimization

Up to this point optimum maneuvers have only

been mentioned in passing. The purpose of this
subsection is thus to include a more detailed dis-

cussion of trajectory optimization.

The trajectory optimization field, and for that

matter the solution of variational problems in

general, has acquired considerable impetus during

the last few years. To the classical calculus-of-

variations approach have been added methods

based on steepest descent, the Pontryagin maximum

principle, and dynamic programming. These latter

are very closely related to the calculus of varia-

tions and are reducible to it, at least in the limit.

Most recently, steepest descent has dominated
the scene. Considerable success has been real-

ized in obtaining approximate optima by this method.

The abandonment of the classical indirect approach

(calculus of variations), which yields exact optima,

in favor of this approximate method, was stimu-

lated by the difficulty encountered in solving the

two-point boundary value problem (in general with

one unknown boundary} which results from the

classical approach.

A new systematic scheme for solving the two-

point boundary value problem with one unknown

boundary has recently been developed (Ref. 16).

Its feasibility and advantages have been demon-
strated (Ref. 17) on a simple trajectory optimiza-

tion problem which possesses an analytical solu-

tion (Ref. 18). The method of solving the variational

boundary value problem is here applied to solve

for the steering program resulting in maximum

payload in the braking phase of a lunar landing

maneuver. The method will now be briefly outlined,

and some representative results will be presented.

It is assumed that the moon is spherical and

does not rotate. Trajectories in a plane are con-

sidered so that the equations of motion may be

written (see sketch below)

= T O) _d
- _cos(-_ - --2 -sin_

r

t_¢ cos
T sin (- "_ - O) + V cos "_ - 2

_( = M---V r r V

r = Vsin'/
(43)

_ V cos
r

Vehicle

| _- Vehicle
|_Loagitudinal

Roll) Axis

Thrust is assumed constant so that the condition

of maximum payload is equivalent to that of

minimum rocket burning time.

The first necessary condition of the calculus of

variations (Euler-Lagrange equations} results in

a boundary value problem. The constraint equations

(43) have to be solved together with the Euler-

Lagrange equations, where conditions are imposed

at both boundaries, and where the terminal bounda-

ry--terminal (minimum) time--is unknown.

Linear perturbations around some nominal

(nonoptimal) solution of this boundary value prob-
lem are considered. This new set of linear, or-

dinary differential equations defines an adjoint set.

Solutions of the adjoint equations are Green _ s

functions, which relate perturbations in initial con-
ditions to terminal conditions. Appropriate linear

combinations of the Green' s functions yield the
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desired perturbations in the unknown (estimated)

initial conditions, and the terminal time, which

will result in desired changes in the terminal

conditions which have to be met. The process is
iterative in nature, since the equations (43) are

nonlinear, and converges rapidly to the solution

of the Eulerian boundary value problem.

This method was applied to the problem at hand.

The pertinent constants are:

- GMq = 4905. 927 km3/sec 2

Rff = 1738. 236 km

T/W0= 0.45

I = 309 sec
sp

g(D0 = 9. 80665 m/sec 2

M 0 = 9979 kg.

The Eulerian boundary value problem was solved

for the initial conditions:-

V 0 = 1.74 km/sec

_0 = 0 °

h 0 = 18,288 m,

which represent the condihons during synchro-

nous ballistic descent, at pericynthion, or at the

start of braking. Two sets of terminal conditions
were solved for:

(1) V
[

Y.I

h 1

(2) V 1

h 1

The solutions appear in Fig. 19. Terminal

flight path angle constraints were not accurately

met because the simplicity of the integration scheme

limited the accuracy. (This was a pilot program. )

The other terminal conditions were satisfactorily

met. It should be pointed out that the accuracy with

which terminal constraints are met is strictly a

function of accuracy in the integration (Ref. 18).

= 0.001 km/sec

= -90 °

= 304. 34 m

= 0.001 km/sec

= -10 o

= 304.34 m

A few comments are in order. It may be ob-

served that all the maneuvering necessary to

change the terminal flight path angle occurs opti-

mally at the end of the trajectory. This is a rather

apparent result since it is easiest to change the

flight path angle when velocity is lowest. It is

observed that fuel expenditure for this maneuver-

ing is rather lo% so that the same optimum tra-

jectory may be flown almost to the end no matter
what the desired terminal orientation. The near-

linearity of the e-curve implies that'a biltnear

tangent steering program is an excellent approxi-
mation. (This is an exact optimum in a constant

gravitational field ; see previous subsection. )

It is pointed out that the trajectories ._hown

in Fig. 19 yield maximum payload for the exact
terminal conditions attained.

A second approach to the control optimization

problem is presented in Ref. 19 and applied to the

braking phase of lunar landing, i.e., that phase
of descent from about 15 km to a few hundred

meters above the lunar surface. Briefly, the

method involves piecewise linear approximations

to a nominal trajectory in a two-dimensional in-

ertial coordinate system. The required control,

as obtained from solving the matrix Riccati equa-

tion, is optimum in the sense that a performance

index is minimized for a specified set of perform-
ance matrices.

The notation of Ref. 19, as defined in the fol-

lowing sketch, has been retained.

A
£

ki_ _ Thrust

The equations which provide the mathematical

model of the system to be controlled are the equa-
tions of motion in the two-dimensional inertial

coordinate system, which become:

x" =-p# x Mcos
r 3 g_oIsp _

.. Z - Z 0 Msin

z = pff 3 - g{B01sp M 0 - Mf
r

(44)

where

Isp = specific impulse of the propellant

g@o = _ea-level acceleration due to earth
gravity

_I = mass flow rate

M 0 = initial mass of the vehicle

Mf = mass of fuel expended

= 180-Or, pitch angle relative to the

negative x-axis
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Controlofthevehicleis to involve a variation of

and _I. Linear approximations to these equa-

tions may be written in terms of perturbations

about the nominal trajectory, x 0 =x - Xnom, x 0

=x - Xnom, etc., by means of Taylor series.

For example,

•. % 0 % %
Xo = -3-_Xo +-8_- Zo +I_f Mfo + M 0aM

(45)

where all partial derivatives are evaluated for

nominal values. The linearized equations can be
written in matrix form as

X = iF(t)] X + [G (t)] u (46)

where X is the state vector which in this case

has as components the variables which describe

the behavior of the system, i.e. ,

X
< x0' x 0. z 0. z 0. Mf0 )

and u is the control vector with the control vari-

ables as components, i.e.,

u --

The r-time-varying coefficient matrices EF (t)_

LG (t)_ are approximated by constant valuesand

for a given increment of time:

_F_ =

=

f21(t)

0 1 0 0 0

f21(t) 0 f23(t) 0 f25(t)

0 0 0 I 0

f41(t) 0 f43(t) 0 f45(t)

0 0 0 0 O

0 0

g21 (t) g22 (t)

0 0

g41 (t) g42 (t)

1 0

OX%l 2X 2 -(Zno m - Z0) 2

: fnom 2nom
_Xno m + (Zno m Zo)

qf23(t) = __j = f41(t) =

az Inom ham

Zno m - z 0

3"Xn°m[X2no m + (Zno m - Zo}2_ 5/2

OJ_0 cos "_nom

f25 (t) = W_f n°m = - %01sp _I )2
nora (M 0 _ Mf

nom

2

az' 0 2 (Zno m -Zo) 2 _ Xnom

f43(t) = _ =/_¢[x2
nom nom + (Zno m Zo_ 2_5]2

%1 sin _-nom

f45(t) = _nom = -g_0IsP _I°m (M0 - Mf )2

nom

'__0 cos g= nora

g21(t)= OMlnom -g_JspM 0 - Mfnom

a_ 0 . sin _nom

g22(t)= -_-nom=-gOOIsp Mn°m M 0 -Mf
nom

O_Z0 sin l_no m

g41(t)= -_nom = -gOoIsp M 0 - Mf
nora

O_ 0

g42(t) = -0_-- nom

cos
' nom

= -g_OIsp Mnom M 0 - Mfnom

These equations comprise the linear model.

The optimum control uwill be that which min-

imizes the specified performance index, which

is, in general, a function of the form

tf

(u) = k E _(tf)" tf__ + _'L(X, u, t) dt.

0

For the lunar landing problem the performance
index selected is

_(u) = ½_T (tf) [S_ :_(tf)

tf

0

The matrices E@' Eq(t] and El_(t)_ may be

selected to meet such requirements as accuracy

and the amount of control available. The sig-

nificance of these matrices will be indicated

by the solution.

Minimization of a given performance index

may be based upon Pontryagin' s maximum

principle, which states that a necessary condi-

tion for an optimum u is that there must exist
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a continuous vector _" such that the Hamiltonian

function

H = L+_Tx

is minimized byu. The conditions that _'must

satisfy are

_i = OH- _j_.

I

and

ak

t = tf

The Hamiltonian then becomes

luT:@:+ :TH=½:T: :+: :FJ:

which is minimized with respect to u by setting

aH
-_ -0

I

which gives the optimum u,

T
The solution for _ is assumed to have the form

[P
Then P(t) is found to satisfy the nonlinear matrix

Riccati equation,

- EP(t ]Ec] [o]T

+ I-F]T EP(t)] + [P(t-_ [-F] + EQ] --o

An additional constraint is the final value of the

Riecati equation,

:Is].

The IS] matrix affgcts only the final values of

control, whereas the |9 matrix influences the

error of the state veer-or X. TheER_ matrix
penalizes the system for using tob-mueh control.

Detailed results from application of the optimum

theory to the luna_r landing problem are presented

in Ref. (19). Final trajectory errors are on the order

of one meter per 300 meters initial error in position

and one m/sec per five m/sec initial error in

velocity. Controls that would use small amounts

of additional fuel for off-nominal trajectory con-
ditions are obtained. For 3000-meter initial

error in position, about 18.2 kg of additional

fuel are required. For initial errors in velocity
of 9 m/sec, 146 kg of additional fuel are re-

quired.

C. ASCENT FROM

LUNAR SURFACE

i. Direct Ascent

The goal of the direct lunar ascent phase is

accurate injection of the vehicle into a certain

transearth trajectory. Since no intermediate or

parking orbit is involved, the required injection

conditions are the final values to be achieved by

the direct ascent trajectory. Figures 20a and

20b give some indication of typical final value re-

quirements for lunar ascent trajectories. The

magnitude and direction of the final velocity vector

required at an altitude of 93 km (50 naut mi) for

injection into 70- and 80-hr return-time transearth

trajectory are given as functions of lunar longi-

tude for launch sites lying in or close to the MOP.

The magnitude of the required velocity vector ex-

hibits little variation with burnout point longitude.

For example, variation for the 80-hr orbit in-

jection is from 2497 to 2490 m/sec. Direct as-

cent from a lunar landing base is possible for

bases over a wide range of the lunar surface if

sufficient propellant is available.

Define an angle _ measured from the moon-
earth direction on the far side of the moon,

positive in_the direction of the moon' s angular

rotation, wd " From Fig. 20a it can be seen

that, in the region of most probable landing sites

in the MOP given by -180 ° < ,]< -100 °, the re-
quired flight path angle is close to 90 ° , i. e., the

ascent trajectory must be nearly vertical. For

this reason, the vertical trajectory analysis of Sub-

section B-lc is again useful as a closed-form

approximate solution. Under the assumptions qf

constant gravity g( 0' constant mass flow rate M,

and constant exhaust velocity Vex, Eqs (3) and (4)

apply in the case of vertical ascent, except that the

signs of all velocities (V 0 and V 1) should be re-

versed if vehicle speed is to be measured positive

upward. These equations, evaluated for the initial
conditions,

t = O: h 0 = O, V 0 = 0

give the following burnout conditions:

VB0

V
ex

=-Iln(l- _)+ g{_0g_--'_0 _W_
(47)

hB0 g$0 1 F

_--: _ m(: - _)
Vex

in(l - _) + r,

i gj__0 _2 l
-_ g@o J (48)

Equation (47) has the same form as Eq (5}, so
_7

that Fig. (4) gives _ for vertical ascent as

V 0 ex

well as _ for v_rtical descent.
ex
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2. Indirect Ascent

a. Ascent technique

The ascent technique which will be investigated

as being most typical is analogous to the descent

technique discussed in Subsection B-$a.

(1) The term "ascent phase" will be ascribed

to the initial powered liftoff portion of

ascent.

(2) Following the initial powered phase, the

space vehicle coasts in an elliptical orbit

to a desired parking orbit altitude.

(3) The vehicle is injected into the parking
orbit.

(4) For the shuttle concept, the shuttle ve-

hicle (LM) executes a rendezvous with

the orbiting module (MOM).

Luna.r

ion

Ascent_

These phases are considered below.

b. Indirect ascent trajectories and requirements

Several sample trajectories for ascent to a
185.2-km circular orbit are shown in Figs. 21

through 25. These figures show range; velocity,

V; flight path angle with respect to local horizontal,

y; and pitch angle with respect to inertial coordi-

nates, e t, on the abscissa scales corresponding to

altitude or flight time on the ordinates. The pitch

program for these runs was based on a nominally
constant pitch rate, 0 = const. Propulsion system

and trajectory parameters for these sample ascents

are given in the following table. Ascent range, as
indicated in the previous sketch, is the lunar

central angle between initial liftoff and orbit inject-
ion burnout.

Sample Ascent Trajectories

(initial phase only)

Ascen,7_

ljange Altitude

Figure T _b hB0 Isp,

No. W_0 (deg) I (kin) l(sec )]

21 0,2 180115.241315

22 0., 1 001,0s8i315 r
23 0. 39741 189 I 21.34 3141315

24 0.7 60 I 18.29_31525 0.99138 189 15.2

F{gure 26 shows a typical complete ascent trajectory.

The total velocity increment required for

ascent and injection into a 185.2-km circular
orbit is shown as a function of initial thrust-to-

weight ratio for several range angles in Fig. 27.
These curves are based on a parametric com-

puter study utilizing approximately constant

pitch rates. The improvement in fuel economy of

this type of program over a gravity turn trajectory

is indicated by a gravity turn data point on Fig.

27. For the particular conditions of the run

T = 0.4) the gravity
(Isp = 315 sec, _b = 75% _'0

turn trajectory was less efficient by about 30
m/sec.

Although, as indicated by Fig. 27, the gravity

turn is not a particularly efficient pitch program,

it is one of the basic types of ascent trajectories
and deserves some mention. Reference 20 pre-

sents an analysis of this type of trajectory. A

gravity turn is one in which the thrust is always

maintained parallel to the vehicle velocity vector.

(The special case of vertical descent, i.e., both

thrust and vehicle velocity in the vertical direction

during flight, was solved analytically in Subsection

B-Ic.) This type of trajectory is particularly

useful for planetary ascents since it keeps the

aerodynamic moments low during ascent in the

denser parts of planetary atmospheres. The

equation of motion for a gravity turn is the same

as Eq (2) for one-dimensional descent, except
that vector notation must be used to allow for

two-dimensional motion:

M -_ = T"- M gl
(49)

where

M = instantane-

ous re- I _

hicle mass __= vehicle ve-

locity vec-

tgr _ "Mg4k

I
= thrust ree-

l
tor

l ^k = unit vector k ^

normal to -i

lunar sur-

face

From the definition of the gravity turn,

T=T_

where the unit vector _ = _
-V

With resolution of the equation of motion along

_- and _, a unit vector normal to _ in the plane of

motion, Eq (49) becomes, in component form

dV-dr-- ( cos

Vb = g¢ sin

(50)
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where _ = thrust orientation angle with respect to

vertical.

For constant g_ , say g_0" and constant _ these

equations can be integrated in closed form.

V = V 0

0
(51)

V oMt=
-V-ex

(52)

However, this analytic solution is not as useful
as that obtained for vertical descent (Subsection

B-lc.). Reference 15 outlines a numerical

solution to Eq (50) for the following conditions:

(1) Constant g_ and T

(2) Constant mass flow rate h_

(3) The initial velocity is zero, and the

trajectory is initially vertical.

The solution proceeds as follows:

T

u(7) = - W-_ ln(1
'0

0

1

where [ i
¢ (7) = tanh

@ (s) ds (53)

(54)

S
_0 in (1 - s) - qJ(s')ds'

0

(Solved by iteration}

T

vw 0
U V

ex

]_0 t

c. Lunar rendezvous

A mission employing the shuttle concept re-

quires that the shuttle be able to rendezvous with

an orbiting module (MOM) in lunar orbit. In

many ways, this rendezvous is easier to perform

than an earth orbit rendezvous. Lunar orbit speed

is much lower than earth orbit speed, and the

ratio of lunar orbit period to lunar rotation rate

is very favorable with regard to launch frequency.
The more difficult aspects of the lunar orbit
rendezvous are associated with the unfamiliar

topography, the lack of ground facilities for

tracking the orbiting vehicle, and the planning of

the ascent guidance commands.

The rendezvous maneuver can be conveniently

considered as consisting of three phases, the

ascent phase, closing phase and docking phase.

During the ascent phase the target vehicle (MOM)

is acquired electronically or optically by the

intercepting shuttle vehicle. The second phase in-

cludes the closing trajectory from acquisition to the

vicinity of the target vehicle, where the third

phase, docking, takes place.

The ascent phase must be considered in the

problem of orbital rendezvous because it is in this

phase that the timing problem of hitting the target

is solved. A shuttle vehicle on the lunar surface

(rotating with a period of about 28 days) must be

launched with the objective of intercepting the

target vehicle, which is orbiting with a period of

about two hours. The ascent phase can accomplish

the interception objective by either of two basic

approaches, direct rendezvous or indirect
rendezvous. The indirect rendezvous is illustrated

and fully discussed in Chapter V. The shuttle

vehicle is launched into an intermediate parking

orbit without considering the position of the target
vehicle in its orbit at launch time. The inter-

mediate parking orbit and target orbit are co-

planar but have different altitudes and, therefore,

different orbital periods. Because of the period

difference, the relative angular position of the

two vehicles changes with time. When the proper

relative position is achieved, the shuttle vehicle
is accelerated into a transfer orbit which ter-

minates in the vicinity of the target vehicle, where

final acquisition can be made. Thus, the timing

problem is solved with the shuttle in orbit.

The direct rendezvous technique is also full_v

discussed in Chapter V. Here, the shuttle vehicle

is not launched until the relative position of the

launch site and the orbiting vehicle is that required

for direct ascent and acquisition. The timing

problem is solved on the ground before launch in
the case of direct rendezvous.

At only two times in every 28 days can the

shuttle be launched into an intercept trajectory

which is optimum from the standpoint of propellant

consumption. Therefore, the shuttle must have

more than the optimum amount of propellant in
order to widen the launch time tolerance. Im-

portant considerations in allocating this fuel sur-

plus are the desired launch-time tolerance, target
orbital altitude and inclination, and the time

available for rendezvous.
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Two means of increasing the launch-time

tolerance are available. These means, range

extension and trajectory shaping, are discussed

in detail in Chapter V. With range extension, the

ascent trajectory reaches its apogee at the target

orbit altitude, as in the optimum ascent case, but

the ascent range is varied as a function of time

to provide launch time tolerance. Direct ascent

rendezvous timing involves matching the inter-

ception point of the ascent trajectory and the tar-

get orbit with the target vehicle (MOM) itself.

The amount of launch time tolerance to be gained

by range extension can be determined by comparing

the motion of the interception point and the target

and making them coincide.

The second means of increasing the launch

time tolerance is by trajectory shaping (see Chapter
V). If a nominal ascent is taken to be one in which

the shuttle arrives at the parking orbit altitude with

zero flight path angle, then launch-time tolerance

can be obtained by flying an ascent trajectory that
would pass through the target point with a nonzero

positive or negative flight path angle. Such a

flight path, of course, would require correction

to zero flight path angle at orbit altitude. Ascents

resulting in a positive flight path angle at inter-

cept permit "launch late" launch time tolerance.

When the ascent trajectory includes an apocynthion,

time is lost in transfer, and "launch early" time

tolerance is provided. Figure 28 shows the lunar

launch time tolerance available from trajectory

shaping. Figure 29 shows the total excess velocity

requirement for increasing launch time tolerance

by range extension and trajectory shaping for

sample out-of-plane launches.

Launch tolerances for missions that do not entail

the shuttle concept are essentially unlimited. From

Chapter IX it is seen that a return to earth can be

made in any transearth trajectory plane and the re-

turn is completely independent of the launch time.
This and the fact that there are no launch azimuth

restrictions result in the ability of launch at any
time.

The second phase, the closing phase, may be

accomplished in various ways, including tail chase,
inverse tail chase, and lateral rendezvous tech-

niques. In the tail chase, the shuttle overtakes
the MOM from behind. The shuttle must travel

at a speed greater than the circular orbit speed

of the target and so will gain altitude during closing.

Therefore, the closing phase for the tail chase

method must begin behind and below the targets.

In the inverse tail chase, the target (MOM) over-

takes the intercepting shuttle, which must be
placed ahead of and above the target. The tail

chase and inverse tail chase are shown in Fig. 30.
Lateral rendezvous, shown in Fig. 31, involves

placing the shuttle in an orbit at the same altitude

as the target orbit. The two orbits cross after

a certain time to permit rendezvous.

Each of the techniques has its advantages and
disadvantages. The tail chase permits radar

sensing from the shuttle vehicle without lunar

surface background, but requires excess fuel to

catch up to the target. The inverse tail chase is

relatively economical, but the lunar surface may
provide an undesirable radar background to the target

during acquisition. Both direct and inverse tail chases

involve curved flight paths which make line-of-

sight steering difficult. The lateral rendezvous

approach does not entail any problems of surface

background, and cross-coupling between velocity

and altitude does complicate steering so much

as in the other techniques. The lateral approach

ranks between the two tail-chase techniques in

economy.

After the closing phase, with the shuttle in the

same orbit as the MOM with approximately I0

meters separation, the docking phase will com-
plete the rendezvous. If the only reason for

rendezvous is to permit refueling, docking may

involve either structural mating of the two vehicles

or simply use of a probe and drogue. On the
other hand, if crew or supplies must be inter-

changed, then structural mating, seals and air

locks are necessary. Precise attitude and trans-

lation control will be required on the "seeker"

vehicle, and, at the minimum, the target vehicle
(MOM) must be attitude-stabilized. Attitude

control of the MOM may be necessary if there is
a possibility of a large discrepancy in attitude be-

tween the two vehicles. In order that damaging
impacts be precluded, closure rate should be

reduced to zero when the vehicles are some dis-

tance apart. A docking mast could then be ex-

tended from one vehicle to engage a receptacle on

the other vehicle and thus serve to pull the two

vehicles together at a closely controlled rate.

Rendezvous has not been discussed in great
detail, since there is essentially little difference

in philosophy between lunar orbit rendezvous

and earth orbit rendezvous, which has been con-

sidered extensively in the literature, e.g., Ref. 21

and Chapter VII of Ref. I. There are only

quantitative differences due to the weaker gravi-
tational field and smaller radius of the moon.
These differences will tend to make lunar orbit

rendezvous easier than earth orbit rendezvous

at the same altitude. Circular orbit speeds
involved in lunar rendezvous closures are on the

order of 2 km/sec as against 8.5 kin/see for low

altitude earth orbit rendezvous. A typical lunar

orbit rendezvous is shown in Fig. 32.

d. Guidance laws

While a wide variety of guidance laws are ap-
plicable to the problem of ascent from the lunar

surface, only one will be singled out as an example.
The law selected is that described in Subsection

B-2d in connection with the descent braking

trajectories. This law is equally applicable to
the case of indirect ascent and, in fact, has been

used to generate the thrust orientation program

for the trajectories plotted in Figs. 21 through 26.

D. HOVERING AND

TRANSLATION REQUIREMENTS

Most manned lunar landings will require the

capability to hover above the landing site while
final observations of the site are made. These

observations will primarily concern the suitability

of landing site terrain. Because the area immedi-

ately beneath the hovering vehicle (LM) might prove

unfavorable (due to uneven rocks, large crevices

or deep dust deposits, for example), the landing
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module (LM) should be capable of translating, i.e.,

maneuvering laterally, during the final descent
phase. This subsection considers propellant re-
quirements and optimum conditions for hovering
and translation.

Since hovering altitude and translation range are

very small compared to the lunar radius R a , and
since propellant weight required in this phase is
small compared to vehicle weight, very good analytic
approximate solutions of the equations of motion
may be obtained. The case of constant vehicle
acceleration and the case of constant thrust with

constant propellant flow rate will be investigated.
For convenience the analyses consider vertical
and horizontal motion separately. Therefore, the
results can be used directly if hovering and trans-
lation are accomplished by separate orthogonal
rocket engines• However, if the required thrust
orientation is obtained by gimbaling a single
engine or by pitching the entire vehicle, the thrust,
position, and velocity as computed should be inter-
preted as components of the resultant vector

quantity.

1. Constant Acceleration

Although motion under constant thrust with
constant flow rate is generally a more realistic
basis for propulsion analysis, the small mass
ratios required for hovering and the extreme
simplicity ot analysis make the case of constant
acceleration useful for preliminary investigations.
Let the landing vehicle (LM) be required to trans-
late with uniform acceleration and deceleration

while hovering at constant altitude. The local

x_ y_ coordinate system can then be assumed an

inertial system, and the total horizontal trans-

lation denoted by x_t can be obtained from the fa-

miliar expression for rectilinear motion,
2

x_t = -_ 2 = _ -4- (55)

where

T
X

9 =

t b =
rocke.t burning time)

constant horizontal thrust acceleration

total hovering time (i. e., horizontal

The constant thrust required is

T - 4x_t W

x g@0 tb_ '

(56)

where W = go0 M is the constant vehicle weight•

Since T x = Isp Wfx and Wfx = Wfx t b, Eq 56 becomes

4x_tW
Wfx = (57)

g_0 Isp tb

Wfx is the total fuel weight lost due to burning of

the horizontal translation engine and _Vfx is the fuel

• °

weight flow rate Wfx _ Mfx g_B0"

The weight of the propellant required to hold the
vehicle at constant altitude during translation,

Wfy, is seen from

= I = (58)
Ty sp Wfy M g_ 0

to be

Wg_0 t b

Wy = Wry t b = (59)
g@0 Isp

The total propellant used for hovering and trans-
lation is

W

Wf = Wfx +Wfy- g$0 Isp

F 4 x£t q
"L + g¢otbj

(60)

For minimum total fuel, to translate a given

distance x_t,

dWf W I_ 4x£t 0t7- =o,(61)

or

t b = 21__ t
W g40

T x Ty = W g _0
go0

Wf 4 x_t glo

-W'- g@o Isp

2. Constant Thrust

for minimum Wf

(62)

a. Translation

It is possible to derive simple analytic solutions
to the equation of translatory motion under the as-
sumptions of constant thrust and constant mass
flow rate. This case is much more realistic than

that of constant acceleration previously considered•
The equation of motion is

d 2 x_

M _ = Wx (63)

where

M = instantaneous total vehicle mass

x_ = horizontal translation

T = constant thrust component in the

x horizontal (xi) direction
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Thethrustprogramselectedis thesimplestpos-
sible. A constantthrustT is appliedfor ap-x
proximatelyhalf theburningtime, at whichpoint
thethrustis reversedto deceleratetheLMto
zerohorizontalvelocitywhenthedesiredtrans-
lationdistancehasbeentraversed. Velocity
at thebeginningofthetranslationwill beassumed
zero. Thus,this constantthrustroutineis
analogousto theconstantaccelerationscheme
previouslyoutlined.Thetimeofthrustreversal,
t1, obviouslywill notbehalftheburningtime,
tb , becausethevehiclewill belighterduringthe
decelerationphasethanin theaccelerationphase
dueto theweightof propellantexpendedduring
translation.

Theequationofmotionmaybe rewritten:
T

X

_aT0
_ =

,___t
1 - M0

where

(64)

M 0 = initial total vehicle mass

h4 = total constant mass flow rate (in-

cluding any flow from vertical
hovering rockets during the trans-
lation)

The first integration of this equation gives the
expression for the horizontal velocity of the LM
at any time during the acceleration phase:

_ T_ In O- -_0 t)= "'a- + X{o;
M

xl0 = 0

(65)

The second integration and evaluation of the con-

stant of integration fb'rthe initialcondition x_ = 0

at t = 0 gives the relation for horizontal position.

In particular, at an arbitrary time tl, }he hori-

zontal position and velocity components are as
follows:

E i]X_l= _ (1 - _1) in (1 -_ 1) +

T (66)

X_l = _ __x In (i - _ 1)
M

where _ 1 = -_0 tl is the mass ratio for rocket

burning from tO to tl.

At this time the thrust is reversed, i.e., the

vehicle obeys the equation of motion

Tx
_0

_-,-- _ (67)
1-_0 t

where Mof = M 0 - M tI is the total vehicle mass

at beginning of the deceleration phase.

Successive integration of this equation and

evaluation of the constants of integration for the

initialconditions of the deceleration phase, x_ =

X_l and {_ = _}tl at t = tl, determine the posi-

tion from the start of the translation and the

velocity at any time during this phase.

T T

X_ = -_- in (1 - _I t) - x in (1

-_r_-° tl) +X_l

T I- M0' (1 - _t)(in (1x_ = -i_ -W Mo'

t) -i)-vT0 (68)

+ (t I - t) In _(l __IVI tl )

'0- _70 tl_

M0
+--_- (, - _} M tl )

M _00 t,)ln(1 m- °

+t 1

M o'
+ "'r-- (1 - _y_--Mtl) (In - tl)

M --0 - 0

0]
The rather formidable position equation simplifies

considerably on evaluation at the end point t --

tb; xl = x_t, x_ = O. The velocity equation

gives, for _:1 = 0 at t = t b •

Tx 1 - "_0 tb

0- M In .1 _
1 -_0 tl) _0 t

(69)

which provides a simple relation between total

burning time and the thrust reversal time.

I01 t M0'
tb = _tl (1-m-o 1) ='_o tl (70)

Substitution of this relation in the position equation
gives, in terms of mass ratio

Tx M0 I
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<in (l - 2 _i ) - i)

- _1 (1 - 2 _1 ) In (1 - 2 _1 )

+ (i - _i ) In(l - _i ) + _i

+ (I - 2 _i ) (In (i - 2 _i ) - In (I - _i ) -1)I

(7D
which reduces to

Tx tl _n(1 _1 ) +2 _1]x_t _I

1 - 1 -21_ 0 t b
where t =

Mass ratios for hovering and translation generally
should be less than _ = 0.01. For such small mass

ratios the previous expression for translational dis-

tance can be approximated by:

x A r_t 2T tb2
(72)

This solution obviously approaches that for con-

stant acceleration (or constant mass with constant
T

thrust since acceleration = ___xx) as _ approaches

M

zero. Translational distance is plotted as a function

of initial thrust-to-weight ratio and burning time in

Fi g. 33.

b. Vertical descent from hover

If the LM is to descend and reach zero altitude

at the end of the translation time, tb, the vertical

component of motion is described by the following
e quat ion.

d2y_

M - T - M (73)
dt _ y g_0

or

T

d2y_ _0

d--grt--
1 N-T0

where

gf0 (74)

y_ = altitude above the lunar surface

T = vertical component of thrust
Y

IVl = total mass flow rate (including any flow

from horizontal rockets).

With the assumptions of constant thrust Ty, con-

stant mass flow rate, M, and constant lunar gravity

go0' this equation can be integrated as in Subsection

B-ic. However, in the case of final descen_

from hover, the initial conditions are y_ = 0

and yl = Y_0 at t = 0. For this case, integration

of the above equation of motion gives:

T In - t)E0 g_0t

y uFT M 0 IVI t)In (1 - _ t)

2

For y_ = 0, Ye = 0 at t =t b, these equations give

T

t b = --if-- In (1 - _) (76)

g_0_

= --_ t b - i) In (1 - _) + +Y_o
(77)

I_ t b
is the total mass ratio. Sub-where _ =-

M 0

stitution of the first equation for T in the second
Y

equation provides the relation

[% 1 )}Y_0 = gl0tb 2 - ½ + ln(1 - _ (78)

For small mass ratios, as will generally be the

case for the final phase of descent, the following
approximation is convenient.

g¢0tb2 (1 + _2
Y_0 _ _ _ _) , 1 > > (78a)

c. Hovering

Hovering precisely at a chosen altitude

obviously requires variable vertical thrust,

Ty =Mg40--M0g_00-_0 "

=

If a constant thrust Ty Ma g_0 were applied, the

solution of the equation of motion with initial

conditions y_ = Y_ 0' J'_ = 0 at t = 0 does not

permit the constraints _ (tb) = 0 or y_ (tb)

- y_ (0) = 0 except for the theoretical limit tb =

= 0. However, with choice of a slightly lower

constant thrust level, the condition _ (tb) = 0

can be achieved. From Eq (75) for the given
initial conditions,

y_.t = -_ In (1--- t_ -g,0tb

M M 0
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T Mo [( (i M tb)Y(t- Y_0 = M--_ 1 - tb)In

bl g_°%2+_0 t - --"Z--- (79)

where the subscript t signifies a value at time tb-

For small mass ratios the first equation gives

Y_ t _ tb 1 _2

so that the end constraint y_ t = 0 is possible if the

constant thrust is selected such that

M0g¢0(1- }) (81)

Substitution of this value in the second equation

of (46) determines the change in altitude during
the '_over, "

1 tb2 _2Y_0 - Y_t _-T_" g_0 _, 1 >> (82)

d. Simultaneous translation and hovering or
descent

If the vertical and horizontal components of

thrust are provided by separate engines, the solu-

tions of Subsections D-2a through D-2c apply

directly for simultaneous translation and hovering

or descent. For touchdown at the same instant as

the required translation is completed, the simul-

taneous equations are, from Eqs (43) and (45) and

i= l +M
x y

¢ Vex _b g_0 tb2 1

xtt _ 4 7[-- + -i-'g g¢0 _ tb2

+ Vex t b (83)

gq 0tb2 (1 _) (84)Y_O- ---YZ-- _ +

where Vex = exhaust velocity of each engine. For

given mission requirements ×_ t and y_ 0" the re-

quired values of _ and t b are determined by these

equations. No optimization is possible since the

problem is completely determined. In the case

of simultaneous translation and hovering with

constant thrust components, only the first of the

two previous equations is a condition. Therefore,

a value of t b can be selected which optimizes the

Wf

mass ratio ¢ = _00 " Values of ¢ and t b selected

in this way then determine the change in altitude

which must be acceptedf

1 %2Y_0 -Y_t _1-2 gl0 _" (85)

Conditions for minimum _, _m' are obtained by

setting

d_

-d-_b - 0 (86)

in the equation resulting from differentiating
Eq(83) with respect to _. The results are:

x_t _ x_t ( _' tb)' are

%_ _m Vex (1 _)+

_m Vextb (i +_ _m) __ (i __ __n)x_ t 4

l gll Otb 2Y_0 - Y_t _ _ _m (87)

where {kn is the minimum _.

It can be seen that these expressions approach

those derived in the constant acceleration case

in the limit as _ _0,

ex

_ g|0tb 2

x_t - -----4--'

These equations demonstrate the utility of Fig. 34
as an accurate approximation for the minimum fuel

required to hover and translate simultaneously.

E. LUNAR LANDING ABORT

It is anticipated that the majority of landing

missions in the near future will not employ direct

(impact) trajectories to the landing site. In the

case of manned landings, crew safety is jeopardized

by use of direct trajectories, while for reconnais-
sance flights (manned or unmanned), the lunar areas

that can be covered are severely limited. Since

most impacting lunar probes have no abort require-

ments, this section is based on a flight wherein the
spacecraft is maneuvered into a circular orbit

about the moon from which the landing phase be-

gins. This phase is initiated by a deorbit maneu-

ver, after which the vehicle descends on a landing

coast trajectory to a lunar altitude of approximately
18 km, at which point a braking maneuver is initi-

ated. The braking raaneuver decelerates the ve-

hicle to hover condition at a low altitude of approx-

imately 600 meters from which translation and

final letdown are accomplished.

During the landing phase, it may become im-
perative to cut short the intended mission and to

alter the course of the spacecraft. Typical reasons
for such action could be propulsion failures, "u.-

safe" trajectories, guidance malfunctions, solar

flare activity, etc.

In this section various techniques of abort during
the landing phase will be discussed, with emphasis

on the manned mission; these techniques are similar

in most respqcts to those presented in Refs. 22 and

Z3. In Technique I the apocynthion altitude of the

abort trajectory equals the initial circular orbit;

in Technique II the apocynthion altitude of the

abort trajectory exceeds the altitude of the initial
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circularorbit; andin TechniqueIII theabort
trajectoryis circular andhasanaltitudeequal
to theabortaltitude. Eachoneoftheaborttech-
niquesabovecanbeperformedwithor without
rendezvous.In addition,abortmaneuversoccur-
ring duringthefinalbrakingandhoveringphases
will bediscussed.

1. Abort with Return to Orbit (Technique I)

a. Abort Technique I without rendezvous

The pertinent orbital relations are illustrated

in the following sketch;

from 178 ° to 150 ° (not shown) increases the

AV T requirements from 3 to 10 m/sec. This

figure shows that there is an optimum downrange

angle to "aim" which minimizes the /_ V T require-

ments. However, in some cases, where hpL is

negative, this aim point must be adjusted to avoid

impact with the lunar surface. This physical
limitation is indicated on the figure and refers to

two types of abort trajectories as shown in the

following sketch.

_0M

_tory

_////; _///////9 _,r

The vehicle is initially in a circular orbit of

altitude h0, and the orbit departure angle @ is

measured from the pericynthion point of the landing

coast trajectory to the deorbit point along the cir-

cular orbit with origin taken at the center of the
moon. A spherical moon is assumed and altitudes

are measured with respect to the lunar surface.

The abort trajectory has an apocynthion altitude

of h 0, and a downrange aim angle (_A) is defined

as the central angle between the abort point and

the apocynthion of the abort trajectory. All rocket
burning is simulated by a velocity impulse AV,

where AV A is the characteristic velocity impulse

required to establish the abort trajectory. Upon

arrival at the apocynthion of the abort trajectory,

the vehicle is injected back into the circular orbit
by a circularizing velocity impulse AV . Hence,

c

the total velocity impulse required to execute an

abort and to inject into a circular orbit is AV T =

AV A + AV e.

Figure 35 presents AV T versus downrange angle

(_A) for three abort altitudes, namely, h A = 152.4

kin, 91.4 kin, and 18.3 km, with an initial circular

orbit altitude of h 0 = 185.2 km. For this case, the

orbit departure angle is e = 178 ° and the pericynthion

altitude of the lauding coast trajectory is hpL =

18. 3 kin. Decreasing the orbit depart_re angle

For the case of a type A abort trajectory,

the vehicle ascends to the apocynthion after the

abort maneuver. If at this time the vehicle fails

to inject into the circular orbit, it will descend

toward pericynthion, and if this pericynthion is
less than some minimum altitude, there will be

an impact.

A type B abort trajectory descends through

its pericynthion first before attaining the circular
orbit altitude. The limitation with this type of

trajectory is again that the pericynthion altitude
be above the lunar surface.

In the present discussion, an abort trajectory

was designated as safe if it attained a pericynthion

altitude of no less than 11 km. Th{s choice was

based on the moon' s topographical characteristics
and was taken to avoid lunar mountains with an

ample margin of safety.

The restriction of a pericynthion above the lunar

surface may be eliminated if the reliability is

deemed high enough to assure that an injection

into the circular orbit will always take place. It

may also be eliminated if design features account

for such a contingency. However, for the present,
this restriction is not waived. As can be seen

from Fig. 35, this restriction on the pericynthion
altitude of the types A and B abort trajectories

essentially describes a safe abort window which is
defined by the angle _ as shown in the following

sketch. Figure 36 Presents a as a function of cir-

cular orbit altitudes h 0 for several values of h A. It
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T,ype A

i i

can be seen that _ decreases rapidly with abort

altitude. But even at low abort altitudes, the win

dow is sufficiently wide (a _- 40 °) to affirm the suc-

cess of manual or emergency backup control modes.

The safe abort window is independent of the other

orbital elements of the landing coast trajectory and

is a function of the abort altitude and initial circu-

lar altitude alone. Active abort orocedures as

described above may become necessary because of

unacceptable coast trajectories, probability of

stage explosions, ease of planning the return flight

to earth, etc. This abort procedure requires two

rocket engine ignitions.

Passive abort procedures require one ignition,

and they utilize a landing coast trajectory that re-
turns to or intersects the initial circular orbit al-

titude where the circularizing maneuver is per-

formed. If the braking phase has begun, an ac-

tive abort becomes mandatory.

b. Abort Technique I with rendezvous

For the problem of rendezvous (shuttle concept)
the vehicle consists of two modules, the landing

module (LM) and the lunar orbital module (MOM).

At the deorbit point the LM leaves the MOM and

establishes a landing coast trajectory while the

MOM continues in the original circular orbit (see

next sketch). In the event of an abort during de-

scent, the objective of the LM is to establish an

abort trajectory whose apocynthion is at the cir-

cular orbit. The slant range (rLM) is the distance

between the LM (actually the shuttle) and the MOM
at the time of abort.

The case for which the abort trajectory allows
the LM to arrive coincident with the MOM is defined

as a !'perfect rendezvous. " This, however, may

not always be desirable because of velocity impulse

requirements and lunar impact restrictions. Thus,
the LM can either lead or lag the MOM after re-

establishing the original circular orbit

If the LM lags the MOM, a "catch-up" maneuver

(gain) is required. For separation angles _ greater

than a certain amount, such maneuvers result in

trajectories that impact the moon if performed in

one revolution.

Should the LM lead the MOM (a more likely case),

a "drop-back" maneuver (loss) is required. The

limiting factor for the loss maneuver can arbitrarily

be chosen to be the loss of line of sight between

the two vehicles. The limiting separation angles

are given in Table l with the corresponding circular

orbit altitude (h0).

TABLE 1

Permissible Separation Am les (_)
I

h 0 (kin)

92.6

185.2

370.4

+6

14n °

26n °

47n °

-6

37 ° where n is the

51 ° number of revo-

69 ° lutions of the

MOM and LM

Performing an indirect rendezvous of this

nature requires three rocket engine ignitions.

By restricting the number of revolutions of the
gain or loss orbits to one, the elapsed time from

the maneuver to the closing phase is approximately

two hours.

The total velocity impulse required to abort and
rendezvous with these maneuvers is shown in

Figs. 37, 38, and 39 for initial orbital altitudes
of 92.6, 185.2, and 370.4 kin, respectively. Each

figure presents several abort altitudes for an orbit

departure angle of 178 ° . The pericynthion altitude

of the landing coast trajectory is chosen in all

cases to be 18.3 kin. The figures show that for

a 1.0-km increase in h O, the minimum Z_V in-

creases-_0.5 m/sec and occurs at downrange aim

angles ( ¢A > 160°) greater than those required for

perfect rendezvous.

Table 2 presents a comparison of the minimum

total AV requirements with and without rendezvous

considerations. The quantities shown do not in-

clude a perfect rendezvous with data for an orbit

departure angle G = 178 ° and a circular orbit al-

titude h 0 = 185.2 km.

hpL

(kin)

18.3

TABLE 2

t zxv
(indirect rendezvous)

i.e., with gain or AV(no
hA loss maneuvers rendezvous)

(kin) (m/sec) (m/sec)

18.3 105 37

91.4 100 40

152.4 70 38

Conditions for a perfect rendezvous are also

indicated in Figs. 37, 38 and 39, and it is seen
that compared with the minimum A V's listed above

the A V requirements increase significantly by

hundreds of meters per second. The required

downrange aim angle for perfect rendezvous is

less than 95 °. Figure 40 presents the velocity

requirements for direct rendezvous (i. e., with-

out gain or loss maneuver) as a function of abort
altitude and various initial orbital altitudes. Also

shown in the figure are the requirements for an

orbit departure angle e -- 95 ° for h 0 = 185.2 km.

This particular departure angle bears significant

interest because it provides a passive abort capa-

bility (i. e., the LM is allowed to coast to the lunar

orbit altitude and an adjustment of the velocity to
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circular orbit velocity (AVc) is included) that

allows rendezvous to take place in approximately

two hours, as explained below.

Consider an initial circular orbit altitude

h 0 with the associated period TO:

B Ct_)

$yachronou_ [-Lunar Orbit

(

t A _£

If the landing coast trajectory also has the

period T 0, then the LM will lead the MOM at

t A, but the modules will be coincident at tB, or

when the orbital central angle _ = 360 ° at which
time the rendezvous maneuver is executed. The

impulse requirement for this maneuver at the

initial orbital altitude stated above (h 0 = 185.2

km) is 138.5 m/sec. For each initial orbit

altitude, there is a departure angle that results
in such a synchronous coast trajectory. Other

departure angles may require several revolu-

tions, or even days, before coincidence is at-
tained.

The AV requirements versus downrange
aim angle for an active abort (i. e., when the

LM is put on the abort trajectory as soon as
possible) from a synchronous orbit are given in

Fig. 41. Data is presented for the case men-

tioned above (h 0 = 185.2 km), and the downrange

aim angle required for a perfect rendezvous is

indicated. The minimum velocity impulse is

approximately 45 m/sec over the impulse re-

quired for the 178 ° orbit departure.

The downrange aim angle necessary for per-

fect rendezvous is shown in Figs. 42, 43, and

44 as a function of abort altitude for h 0 = 92.6,

185.2, and 370.4 kin, respectively. Also included

in these figures are the downrange angles that

result in a plus and minus 1 ° separation angle
between the LM and MOM when the LM arrives

at apocynthion. These figures may be interpreted

in several ways. First, assuming that the sep-
aration distance ( -_ 35 kin) is the reasonable

limit of the guidance and propulsion capability of

the LM for the closing phase, the curves repre-
sent an acceptable rendezvous window. This

window decreases rapidly as the abort altitude

decreases. Secondly, if the position-time history

of the MOM is not exactly as planned (for ex-

ample, if there exists a separation angle of

-1°), but the LM abort guidance is accurate,

the increase in AV requirements may be

found. This is accomplished by noting that

a decrease in downrange angle (Figs. 42

through 44) is accompanied by an increase in

abort velocity impulse (Figs. 37 through 41).

Figures 42 through 44 are presented for orbit

departure angles of 178 °. Included in Fig. 43,

is the departure angle of 95 ° (synchronous orbit).

A decrease of the departure angle results in a

rotation of the _Aversus h A curves in Figs. 42

through 44, which lowers the rendezvous window

at higher abort altitudes and slightly decreases

the window size. A reduction of pericynthion

altitude hpL of the coast trajectory (not shown)

raises the rendezvous window and increases its

size.

Superimposed on Figs. 42, 43 and 44 is the

impact restriction for type A abort trajectories.

As is noticed, if "safe"abort trajectories are

specified, perfect rendezvous at all times is not

possible and gain or loss maneuvers have to be

performed. These maneuvers increase the ren-

dezvous time by 2 hr. It was found that type B
abort trajectories do not affect the rendezvous

problem because the downrange angles at which

they occur are far removed from those required

for perfect rendezvous.

Another important aspect of rendezvous mis-

sions is the slant range between the LM and MOM
during the landing phase. The maximum slant

range occurs at the initiation of the braking phase

(to hovering and landing) as shown in Fig. 45.

This figure presents the slant range as a function

of altitude during the landing coast trajectory for
initial circular orbit altitudes of 92.6, 185.2 and

370.4 kin. The maximum slant ranges for an or-

hit departure angle of 178 ° are 185, 410 and 820

kin, respectively. After braking begins, the slant

range decreases to values equivalent to the initial

circular orbit altitudes, i.e., at some point during

the braking or hovering phase MOM is directly
overhead.

2. Abort with Return to Orbit and Perfect Lunar

Rendezvous (Technique [I)

The following sketch illustrates this technique.

In this method the abort trajectory is such that

its apocynthion altitude exceeds the circular orbit

altitude. This allows the MOM to "catch up"

while the LM is still in its abort trajectory above

the circular orbit altitude, so that both arrive at

the same time at the rendezvous point at altitude

h 0. Figure 46 presents the total AV required to

abort and rendezvous from a descent use of a syn-

chronous orbit as a function of time from the de-

orbit maneuver. The solid curve corresponds to

Technique I and the dashed curves to the present

method (Technique If) for three values of time from

abort to rendezvous. An auxiliary scale in Fig.

13 indicates the abort altitude hA .

Depending on the time requirements, the

savings in AV (i. e., fuel savings) by use of Tech-

nique II instead of Technique I can be quite large.

Table 3 presents the velocity requirements for

the two techniques when a perfect rendezvous is

considered. The circular orbit altitude h 0 is
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MOM (at time of abort)

Landing

Coast Trajectory

Maneuvel

lnitial

Circular

Orbit

185.2 krn, and the orbit departure angle is 95 ° .

TABLE 3

Tech-

nique I Technique II
AV AV (m/sec)

Time from Abort to Rendezvous

(m/sec) 1000 sec 3000 sec 5000 sec(km)

20 1290

30 940

60 595

i00 360

160 195

960

765

560

390

195

425

390

330

260

170

205

220

210

190

150

It is seen from Table 3 that for low abort aLti-

tudes the velocity requirements using Technique
II are significantly smaller. This is due to the

fact that larger downrange angles are possible

with this method. However, for high abort al-
titudes, the advantage is not as great and the

differences reduce to zero as h A approaches h 0.

In addition, the AV requirements for a typical

braking phase are included in Fig. 46. It is seen

that during the braking phase, the fuel savings

of Technique II diminish. The maximum pro-
pulsion requirement (__ 1750 m/sec) for abort

occurs, as is expected, at the end of braking.

3. Circular Abort Trajectory (Technique III)

This type of abort is pictured in the sketch at
the right. If an abort becomes necessary during

the landing coast trajectory, another alternative
to the two previously discussed techniques is to
establish a circular orbit at the abort altitude

and leave the LM in this orbit for an indefinite

time.

This abort technique is attractive for non-

rendezvous missions and for missions that

require establishment of very low circular or-

bits about the moon. Table 4 gives the AV re-

raJectory

\ /

/

/

/

h A

MON, LM

/ Rendezvoua

quirements for orbit departure angles of 178 °

and 95 ° as well as the AV required for passive

aborts. Passive aborts return to the initial

circular altitude of 185.2 km and include the

adjustment of the velocity to the circular or-

bit velocity. Impulse requirements may be
either larger or smaller than the passive

maneuver, depending on the orbit departure

angle (®).

TABLE 4

h 0 = 185.2 km, hpL = 18.3 km

h A

152.4

121.92

91.44

60.96

30.48

AV, _= 178 ° AV, _ = 95 °

(m/sec) (m/see)

Passive Active

36.6 61.9

36.6 72. 1

36.6 74. 1

36.6 67

36.6 50

Passive Active

138.5 138.4
138.5 133.7

138.5 125.4
138.5 108.8

138.5 85.2

Landing

Trajectory

Circ .at
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4. Abort Durin_ the Hovering Phase

Final letdown to the lunar surface requires

that the landing module possess a rate of descent
appropriate to the type of landing, whether for
soft or hard landings. For soft landings, which
are considered in this section, the most crucial

stage of the letdown maneuver occurs within 30
meters of the lunar surface. If an abort becomes

necessary during this time, important considera-
tions are the abort thrust-to-weight ratio, the
reaction time and the design structural limit of
the LM.

The objective of the abort during this phase
is to establish a positive rate of climb before

impact with the lunar surface, or to ensure that
a touchdown on the surface will be within mis-

sion design limits.

The landing safety boundaries are illustrated
for a typical abort thrust-to-weight ratio of

T

W_0 = 0.422. It is assumed that the delay time

to ignite the abort engines or increase engine
thrust to the desired emergency value is one
second. During this reaction interval, the LM

is assumeo to descend ballistically (_n = 0) from an

initial altitude and an initial rate of descent.

Figure 47 gives a safety boundary for the case
that impacts without use of emergency thrust and
for the conditions stated above. If the initial con-
ditions of the LM are to the left of the boundary,

the module can recover before impact and initiate
an ascent back to orbit. To the right, impact can-

not be avoided. Included in the figure is an arbitrary

impact structural limit of 6 g@,0 (with shock ab-

( T = 0). Initial con-
sorbers) based on free fall _0

ditions to the right of this limit are structurally
unsafe for free fall to the surface.

Also included in the figure is a typical descent
as executed by an automatic landing system. As
long as the descent is to the left of the boundaries,
the letdown is continued in a normal fashion.

However, if the altitude is greater than 11 meters
and the descent reaches the safety limit, abort
propulsion is initiated followed by an ascent to
orbit. When the altitude is less than 11 meters,

the main landing propulsion is terminated at the
limit and the module drops in. It is further
assumed that the horizontal component of velocity
is within the stability margin of the LM while it
is below 11 meters of altitude.

5. Lunar Surface Abort

After completion of a lunar landing, the
module will remain on the surface for a selected

interval of time. If during this stay time an
abort becomes necessary, the module will initiate
an ascent phase. For missions that do not entail
lunar rendezvous, the launch is accomplished in
a normal manner. That is, the module is rolled
to the desired azimuth, and the ascent is carried

on without changes from the nominal ascent tra-
jectory. However, for the case where lunar ren-
dezvous is a consideration, the launch azimuth is
somewhat restricted.

The sketch below illustrates how plane changes
become necessary when aborting with the require-
ment to rendezvous for a launch-compatible orbit.

Wq

/Landing aite at

_"£nal take-off

_nd£_ alteat i_I / _ 1

at abort

_nar _ _- Lunar Zquator /

orbit_ _ /

This type of orbit passes over the landing
site once the landing phase, and again after a
nominal stay time, so that both ascent and de-
scent occur essentially in the orbit plane. Since
the moon is rotating, the landing site will not lie
in the plane of the orbiting MOM at all times.
Therefore, a launch at any time during the nomi-

nal stay time and after the stay time will result
in the site being displaced from the orbital plane.

The maximum displacement is given in Fig.
48 for aborts made after one-hal_ the nominal

stay time, for aborts one day past the nominal
stay time, and for various landing-site latitudes.
This range is zero for sites on the lunar equator
and increases with site latitude.

Aborts from the lunar surface should be suc-

cessful. Although any vehicle will be designed

for high reliability, the question still arises as
to what can be done in the event of a primary
guidance failure. The possibility of such an
emergency requires some type of backup

guidance system.

For illustrative purposes, a backup system
utilizing strapped down gyros and three ortho-
gonally mounted accelerometers is assumed.
Such a system would require a man to complete
the guidance loop. Module attitude is related to
him from the gyros and velocity from the ac-
celerometers.

The above manual ascent technique is con-
sidered the simplest. It consists of lifting off and
rising vertically for an interval of time. The
module is then pitched to a desired inertial thrust

attitude 8 t, which is measured from the x t- axis

to the thrust axis, and this attitude is maintained
constant in inertial space until engine cutoff. It
is assumed that the nominal mission specifies
the establishment of a lunar orbit at 185.2 kin.
Therefore, after thrust cutoff, the module coasts
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TABLE 5

t t 0 t

T/W0 (see} (de_)

0.4 60 20.7

0.4 100 17.5

0.4 100 13

0.6 60 17

0.6 100 11.8

8hA L

It t

(m/sec)

0

-204, 2

-1143,

0

-323.1

a 6 o

at t

(de_/sec)

-0.3

-0.32

0.4

-0.2

-0.4

0hA L

-_t

(m/deg)

19507

20970

25146

22068

23590

a_ o

(deg/deg)

0.5

0

2.5

0.75

0

ahAL

_b

(m/sec)

8338

10741

8918

14246

7699

O _0

Nh

(deg/see)

1,5

2

3.2

2.35

2.55

t b

(see)

340

350

360

220

230

to an apocynthion altitude of 185.2 km, at which

time injection into a circular orbit is made. Two

thrust-to-weight ratios have been investigated for
a fuel specific impulse of I = 315 see, and the

sp

results are presented in Fig. 49. The ascent

range angle _0' range angle measured from

liftoff to orbit injection is shown as a function

of tilt time with burning time as a parameter.
Also noted in the figure are the acceptable

limits of tilt time as determined from trajectory
sensitivities. Sensitivities are determined by

assuming errors of 1 second in tilt time (t t ) and

burning time t b plus i ° in 0 t (inertial thrust or

pitch attitude), and with out-of-plane maneuvers

not being considered. These errors are con-

sidered representative. The areas of decreasing,

minimum, and rapidly increasing sensitivities
for the thrust-to-weight ratios are shown in

Fig. 49.

Typical sensitivities are listed in Table 5,

where hAL = apocynthion altitude.

Conditions in the area of decreasing sensi-

tivity result in a maximum rectangular dispersion
area from the nominal point of 66.6 km in alti-

tude and 222 km in range on arrival at apocyn-
thion for the above-mentioned errors, This

maximum dispersion rectangle is shown by the

curve marked "limit" in Fig. 49. Note also

the limited amount of range control as shown in

Fig. 49. For both values of T/W 0, the range

angle _0 can be varied from 40 to 70 degrees.

As the tilt time is prolonged, the Z_V require-
ments increase, as can be seen in Table 6.

Compared to guided ascents (Section C), the

AV requirements increase by 60 to 90 m/see,

Also included in Table 6 is the required pitch

attitude e t.

As can be seen from the above discussion,

lunar ascent utilizing this backup technique is

feasible. However, for missions involving a
lunar rendezvous, launch time tolerances are

drastically reduced because of the restricted
range control.

This implies that additional stored pitch pro-

grams, preferably with constant rates, be used

to increase range control. These pitch programs

can be generated with clocked potentiometers,

and the backup technique is again found to be
quite feasible.

The initial pitch angle ({)tO), pitch rate (0t),

and burning time t b required to extend (60) to

180 ° are shown in Fig. 50. The pitch rate (0 t)

is held constant throughout the burning phase,

with data presented for T/W 0 = 0.4, T/W 0 = 0. 7
and I = 315 sec.

sp

Much of the data on lunar abort presented in
this section is illustrative of the various tech-

niques and representative of some present plans

for lunar landing abort, rather than being of a

parametric nature. The number of parameters

is too large to be presented over all values of

each trajectory variable. Practical limits on the

variables are often prescribed by the available

hardware at the time of the mission, and they

t t

T/W0 (see)

0,4 20

0.4 60

0.4 100

0.4 20

0.4 60

0.4 100

0.4 100

0.6 20

0.6 60

0.6 100

0.6 20

0.6 60

0.6 100

TABLE 6

t b

(sec)

340

340

340

350

350

350

360

220

220

220

230

230

230

AV

(m/sec)

194.8

1962.9

200.2

1877.6

1941.6

2004.1

2276.3

1872.7

1910.2

1923.6

1851.4

1881.8

1929.1

0 t

(de I)

20.4

20.7

20.4

16.5

17.0

I 17.5

13.0

16.9

17.0

16.3

8.3

11.3

11.8
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can be further restricted by the choice of abort
technique as was illustrated in this section.
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Fig. 1. Lunar Impact Velocity _ithout Rocket Braking
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Fig. 8. Variation of optimum

thrust/mass ratio with

propulsion-system

mass parameter
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Fig. 30. In-Plane Rendezvous Techniques
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Fig. 31. Lateral Rendezvous
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IX. MOON-TO-EARTH TRANSFER

Chapter V focused attention on the techniques

for ascending from the earth' s surface to the

translunar injection point where a ballistic tra-

jectory that satisfies various mission constraints
is established. Chapter VI then presented a cata-

logue of circumlunar trajectory data that specified

the injection condition for the ballistic trajectory

around the moon with a return to the vicinity of

the earth. Another' class oftranslunar trajec-

tories which do not return ballistically to the

vicinity of the earth, namely approach trajec-

tories (Chapter IV, Section A), is catalogued in

Subsection A-2 of this chapter.

When the objective of the mission is accom-

plished, whether it be exploration, surveillance,

or logistics, etc., it may be desirable to return

the vehicle to earth. (This requirement is man-

datory if the mission is manned.) Therefore,

there are also injection requirements at the moon

that must be satisfied if the spacecraft is to re-

turn to the vicinity of earth. Two techniques
exist whereby these lunar injection conditions

can be achieved. The first is a "direct departure

technique" in which the spacecraft is boosted

directly from tile lunar surface to the transearth

injection point, inferring lunar landing missions

only, In the second technique, the vehicle is in

a lunar parking orbit or establishes one prior

to injection into a transearth trajectory--hence
it is called the "orbital departure technique. "
Because of the limited data available for the first

technique, and since orbital departure is more

general, in that the direct departure technique

can be regarded as a special case of the orbitai

departure technique, oniy the second technique

is discussed in this chapter',

Transearth trajectory data is catalogued in
Section A in the same manner as was the circum-

lunar data. It will be seen that the flight times

back to earth are for the most part unrestricted,

thereby easing the timing problem for returning

to specific earth sites. This same transearth

catalogue can also be interpreted as a translunar

catalogue. The interpreted trajectory data rep-

resents the approach class of translunar trajec-

tories. For this class of lunar trajectories, two

rtlaior improvements over the circumIunar class

are realized, namely:

(1) A wider choice of translunar flight time
is now available,

(2) Any lunar" site or feature is accessible

for landing, surveillance or rendezvous

purposes.

The use of the catalogue material for mission

planning is demonstrated for transearth trajec-

tortes by the first sample mission in Chapter XI

and for the interpreted translunar trajectories by

the second sample mission in that chapter.

Transearth trajectory energy requirements for

guidance are briefly discussed in Section B and
they exhibit essentially the same trends as pre-

sented in Chapter VI, Section C. Since naviga-

tion, tracking, and guidance techniques for trans-
earth and transhmar trajectories are identical,

the discussion in Chapter VI applies. However,

abort during the transearth phase is somewhat
of a misnomer since the only action that can be

taken is to maneuver to "speed up" the return

or to change the transearth trajectory inclination

to ensure arrival at a given earth landing site.
The velocity impulse requirement to accomplish

these two maneuvers separately is given in

Chapter XI.

A. INJECTION REQUIREMENTS I,'OH,
MOON- TO-EA RTlt TRAJECTORIES

The data given in this chapter presents the in-

jection requirements for returning from the moon
to earth by use of a specific lunar departure tech-

nique, namely, the 'orbital departure technique."

In it, the spacecraft is assumed to be in a circular
orbit around the moon. At the proper position in

the orbit, the vehicle is accelerated by rocket

burning to the desired injection conditions for a
transearth trajectory which is ballistic and returns

the spacecraft safely to the immediate vicinity of

the earth. Again, as in Chapter VI, the data has

been generated by the Voice _eehnique except that

the translunar portion of the Voice program was

eliminated. Thus, the nomenclature and param-

eters referring to lunar trajectories that have

been presented in previous chapters remain un-

changed, the moon is assumed spherically sym-
metric and satellite motion around the moon

occurs in a restricted two-body orbit, The effect

of perturbations on the orbit, such as lunar tri-

axiality, and the attractions of the earth and sun

have been discussed briefly in Section B of Chapter

VII. Departure from elliptic orbits around the
moon has not been considered since these orbits

seem to offer few advantages over circular lunar

orbits. Some disadvantages of elliptic lunar orbits

include: (1) the more compiicated navigation and

guidance that is required for establishing elliptic

orbits of arbitrary orientation around tile moon,

and (2) the possibility of vehicle impact with the

moon for elliptic orbits with low pericynthion

altitudes if perturbing forces act for a long time.

Also, the addition of two new trajectory param-

eters by elliptic orbits would make the cataloguing

of transearth trajectories almost impossible.

1, The Transearth Trajectory Catalogue

As was mentioned above, the spacecraft is
assumed to be in circular orbit around the moon.

The vehicle may have been placed into this orbit

either at the terminal phase of a translunar

trajectory, or by ascending from the lunar sur-

face. Since in the general case there are no
launch azimuth restrictions on the n]oon, &nd
since an infinite number of lunar orbit orienta-

tions can be established by means of translunar
trajectories, the parameters of the initial cir-

cular orbit around tile moon are completel},

arbitrary from an operational viewpoint. Only

optimization with respect to some aspect of the
entire trajectory and mission constraints

governs the selection of nominal orbital param-
eters. Therefore, it is desirable to obtain

transearth injection requirements for an ar-

bitrary injection point near the moon.
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The catalogue again uses the MOP (moon' s

orbital plane), which is _ plane of symmetry, as

a reference plane and employs the trajectory

parameters defined in Chapters IV and VI. As an

aid to understanding the material in this chapter,

the following sketch illustrates the geometry of a

transearth injection near the moon:

_(

Parking Orbit

__ _ _ .... d T .....

_/ S, ...... ft" _.

/_*st ./" Motion _ j-

_/ J J / _ Moon's Orbital

Injection Point/ _ ._e

Here is shown the lunar ground tr,_ce of the

circular lunar orbit which is called the parking

orbit as in the case of earth departure. The orbit

is inclined to the MOP by the angle i m, 0°__ im_<90%

and the spacecraft' s motion in this orbit is as
indicated. The lunar satellite, as shown, may be

regarded as being in a retrograde orbit relative
to the MOP (i. e., its motion is "westward" or

against the component of _lunar rotation in the

MOP). Since i varies only between 0 ° and 90 °,
m

the "eastward" or "westward" satellite motion

around the moon must be specified together with
the value of i . '_North" is defined as in the

m

direction of the angular momentum vector of the
moon's orbital motion around the earth, and the

"East" and "West" directions are defined with

respect to the MOP by the same convention used
for earth departure. These directions are not to

be confused with the selenographic cardinal direc-

tion given in Chapter III. The intersection of the

parking orbit plane with the MOP is designated by

the angle 0 M (-180 °__ 0M_< 180 °) which is

measured positively eastward from the earth-

moon line (EML) to the descending node of the

parking orbit relative to the MOP. The values of

im, 8M specify the orientation of the circular

lunar orbit, while its orbital radius r_A the

orbital central angle _M' and "eastward" or

"westward" spacecraft motion specify the location

of the spacecraft in the orbit at any time.

The injection into the transearth trajectory

takes place at a central angle -180°__ _M0__ 180 °,

where _M0 is measured positively toward north

from the descending node. Transearth injection
is also assumed to be in the direction of the

spacecraft' s motion. At the transearth injection

point, and after the spacecraft has been acceler-

ated, in addition to i m, 0 M and BM0. the param-

eters shown in the following sketch are needed for

complete specification of the injection.

Local A

Horizon_al

/ >" r i X

: io0n'::

where

V(_ 0 is the transearth injection velocity in the
selenocentric lunar equatorial coordinate

system

hpL is the transearth injection altitude hpL=

rCA - Re

_¢0 is the transearth injection flight path
angle with respect to the lunar local

horizontal.

It is also assumed that during transearth in-

jection the spacecraft is accelerated instanta-

neously, or a velocity impulse AV is applied, as
shown above.

V_ = V +Av0 ¢c

where V_ c is the circular orbital velocity cor-

responding to the radius rq A in the selenocentric

coordinate system x yq z_. The effect of finite

burning time and finite thrust-to-weight ratio on

the fuel requirements of transearth injection is

discussed in Chapter VII. The material presented

in this catalogue is for _0 = 0°' and hence the

transearth injection altitude hpL is also the peri-

cynthion altitude, I A _1 is colinear with V_ e

and can be added algebraicaIly to c to obtain

0 ; A V is considered an injeetion condition.

When the space vehicle approaches earth on

the transearth trajectory, its inclination to the

MOP, iVT E, is defined in the same way as in

Section A, Chapter VI. The value of iVTE.

-180 °_< iVT E< 180 ° is considered a trajectory

parameter.

The transearth trajectories have been similar

ly catalogued as the circumlunar trajectories in

Chapter VI. They have been graphically recorded

in Figs. 1 to 90 for specific mission constraints
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of {m' lunarparkingorbit inclination,l{O{, earth-

moon distance in terms of earth radii, hpL ,

transearth injection and parking orbit altitude, and

hpE, the vacuum perigee altitude of the transearth

trajectory. The transearth catalogue includes data

for only one value of hpL, namely hpL = 185.2 km.

The parking orbit inclination, i m, is varied from

5 ° to 90 ° and the transearth perigee altitude hpE

= 183 km. Although this altitude is not in any

safe re-entry corridor, it can be considered so

since the small ehange required in hpE for a safe

re-entry corridor will have insignificant effects

on the trajectory parameters. Again, as was the

case in Chapter VI, l{@_ is varied from 56 El{

(earth radii) to 64 El{,which are the minimum lunar

perigee radius and maximum lunar apogee radius,

respectively, that can be encountered because of

the eccentricity of the moon' s orbit around the

earth.

In addition to the transearth injection conditions

of in, @M" _M0" /xV and hpL , the flight time t
P

from transearth injection to perigee is recorded.

Although the symbol tp denoted the flight time

from the translunar injection to pericynthion in

Chapter VI, it will become obvious in the next sub-

section why the same symbol was chosen here.

The data contained in the catalogue is also given

as a function of iVT E but for the independent

parameter of 0M.

Table i gives the contents of the catalogue ap-

portioned between the three trajectory constraints

of in, l{O_ and transearth injection direction.

TABLE 1

I{ _ im Injection

Case (ER) (deg) Direction Figures

I 56 5 Westward 1 to 3
2 56 15 Westward 6 to 8

3 56 30 Westward ii to 13

4 56 60 Westward 16 to 18

5 56 90 Westward 21 to 23

6 60 5 Westward 26 to 28

7 60 15 Westward 31 to 33

8 60 30 Westward 36 to 38

9 60 60 Westward 41 to 43
I0 60 90 Westward 46 to 48

II 64 5 Westward 51 to 53
12 64 15 Westward 56 to 58

13 64 30 Westward 61 to 63

14 64 60 Westward 66 to 68

15 64 90 Westward 71 to 73

16 60 5 Eastward 76 to 78

17 60 15 Eastward 79 to 81
18 60 30 Eastward 82 to 84

19 60 60 Eastward 85 to 87

20 60 90 Eastward 88 to 90

Trajectory data is given by the following

variables as a function of iVT E for each of the

above constraints:

(1) t
P

(2) _V

(3) _MO

The angle OM is not given as such in the figures,

but rather with an additional subscript TE to ease

the interpretation of the data when considering

translunar trajectories as discussed in the next

subsection. Therefore, when considering moon-

to-earth transfers,the appropriate symbol Is_-Z-_MTE

with the same definition as 0 M. The parameter

0MT E is always given in the field of the graph.

The majority of catalogued data is for a west-

ward transearth injection or retrograde relative

to the MOP. This selection is based on the as-

sumption that most approaches to the moon from a

translunar trajectory will be in a westward direction

and,thus, the presented data is more useful for the

mission planner. However, some eastward trans-

earth injection data is presented for R(9 _ = 60 ER,

mainly for comparison purposes with westward

injections R(_(_ = 60 ER and rough approximations

for other values of R(_)_.

The trends in each of the three major trajectory

variables as shown in the catalogue are discussed

below:

{1)
tp--Flight time from transearth injection

near the moon to vacuum perigee. Flight
time is given in Figs. I, 6, ii, 16, 21, 26,

31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 79,

82, 85 and 88. It is immediately observed
that for values of i < 30 ° a discontinuous

rn

region exists on the graphs for certam values

of OMTE, and as the region is approached,

flight times increase very rapidly. This

region has been denoted _[mpractical Region"

in the catalogued fig_..res. Actually this
"impractical region also exists for larger

i t s but is not as pronounced since only
m

a smaller range of 0MTEVS are affected.

The discontinuity represents the situation
where return times to earth become im-

practical or where the spacecraft escapes
from the sphere of influence of the earth
and moon into a heliocentric orbit. The

sketch below illustrates this latter phenom-

enon for a trajectory in the MOP (i m = 0 °)

and both a westward and eastward transearth

injection. When the vehicle exits the lunar

volume of influence, its velocity relative

to the moon is _A. However,_ when its

velocity relative to earth V_) A is found by

adding the moonVs velocity, Voq, about the

earth, the spacecraft is moving away from
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the earth with sufficient energy to leave the

sphere of influence of the earth and moon

and be captured by the sun.

The figures show that the spacecraft can
be made to return to earth in 50 hr or, if

desired, 150 hr' for any value of i m and F_®_,

and for one fixed value of hpL, return time

is not restricted to the degree as was the

case for circumlunar trajectories of Chapter
VI.

(2) &V--Velocity impulse required to inject the

spacecraft into a transearth trajectory.
The value for this variable is found in the

figures immediately following the flight time

figures. As expected, the higher the AV

requirement, the lower the flight time.

Another point worth mentioning is the fact

that the minimum AV required is approx-

imately 800 m/see regardless of the values

of R_, ira, or 0MT E

(3) _M0--Orbital central angle of the transearth

injection point, measured postively toward

the north from the descending node, -180 °

_M0 _--180°" Assuming for the moment

that a return time to earth has been selected

for given values OMT E and i m along with the

return inclination iVTE, the required &V

can be found. The final variable that com-

pletely describes the injection is the in-

jection position SM0' as defined above. It

is determined by entering the catalogue with

the additional mission constraints of iVTE,

OM, and im.

(t_rB_eetory leaven the

sphere of inflwea_e

of the earth and anon)_a_

/// el _Exit of Spacecraft
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/ / 1
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Thematerialgivenin thecataloguecanbe
extendedsignificantlybyuseof symmetryaboutthe
MOP,andit is importantthatanunderstandingof
this extensionprocedurebeachieved.It is il-
lustratedbymeansof anexample.Assumethat
im = 60°, 0MTE =80°, iV_fE=40°, tp =80hr,
AV = 1700 m/see, _M0 = -20° and the transearth

injection is westward. This situation is shown

in the following sketch (parking orbit O).

e8

-,od ° /"3, q -%, Parki.g Orbit q)

king Orbit _)

- 8o o

Since the MOP is a plane of symmetry, another

parking orbit (_) can be established that has the

same value of i m, 60 °, but having an ascending

node that is now coincident with the descending

node of parking orbit C) • If the injection point ]3

has the same orbital central angle as A from the

line of nodes, the transearth trajectory established

from parking orbit (_) is a mirror image of the

transearth trajectory established from parking
orbit (_) . Therefore the transearth trajectory

data of parking orbit (_ can be used for parking

orbit _) by means of a few simple rules, for

interpreting the catalogued data, namely:

0MT E (_) = 9MT E C) - 180° =

or

9MT E (_ + 180 ° =

_Mo®: lsoo+_Mo(!) " 16o °

iVTI ®=-iVT = -4o°

AV (_) = AV _) = 1700 m/see

i m _) = i m _ : 60 °

tp (_) = tp (T) = 80 hr

both transearth injections are westward.

-100 °

(la)

260 °

(lb)

(lc)

(id)

(le)

(10

The next sketch illustrates the above procedure

for a typical tp versus iVT E curve similar to

Fig. 1 in the catalogue.

The "impractical region" has been shifted to

the right and the curves are a mirror image about
• = 0 o.
IVTE

t
P

//

mpra¢ tical ', /
_- Region -- _,Region _ Impractical

eMTE = 60°"" _-@MTE = 240°

\\\ '

/ \

io° .... 8- (.) .... °
IVT B

The extension of the catalogued transearth data

by means of conservation of energy to other values

of hpE andV(_ 0 can probably be performed for

small changes in hpL. tlowever, due to the low

velocity of the spacecraft relative to the moon.

trajectory parameters other than V_() would be,

affected, notably the flight time t . Thus the
P

formula given by Eq (2) of Section A, Chapter VI

for change in near-earth injection altitude of

circumlunar trajectories is applic@)le for a

smaller ranee of lunau injection altitudes. Be-
fore definite recommendations can be made on

the useful range of injection altitudes, a com-

parison of empirically determined parameters

with Voice and integrated trajectories is required

2. Interpretation of Transearth Trajectory Data

as Translunar Trajectory Data

The symmetry discussed above can also be

employed in interpreting moon-to-earth tra-

jectories as earth-to-moon trajectories, as can

be visualized by means of the following sketch
which shows the moon at the time of transearth

injection t:::. At this time, the orientation of the

parking orbit about the moon is specified by i m

and 0MT E. During the moon-to-earth transfer,

the moon changes position from t* to the point

P; and on arrival at earth the transearth tra-

jectory has an inclination iVT E.

If a mirror were placed along the EML per-

pendicular to the MOP, an image trajectory would

be seen. When the moon is at P, its image is at

Q and the spacecraft in the image trajectory is
also at earth. Now if the motion of the moon were

to be reversed, i.e., if it were to move from P

to its initial location at t*, the motion of the

spacecraft in the transearth trajectory would

also be reversed, ttowever, when viewing the

image of this lunar reverse motion it is evident

that as P moves towards t*, its image Q is also

moving toward t;:-', and the spacecraft moves from

the earth toward the moon along the image tra-

jectory.

This image situation is identical to the actual

translunar situation since Q moves in the same
direction as does the moon in its orbital motion.

Thus the transearth trajectory may be interpreted

as a translunar trajectory, f The following rules

tFor instance, if the transearth trajectory is direct

north the translunar trajectory is also direct north.
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regarding this interpretation can now be made:

for iVT E use iVT L (2a)

for 0MT E use 180 ° - OMT L (2b)

where

0MT L locates the descending node of

the parking orbit of the translunar
trajectory

for i m (transearth) use i m (translunar) (2c)

for _M0 (transearth) use 180 ° - /3M0

(translunar) (2d)

for AV(transearth injection) use AV
(see definition in Chapter VI) (2e)

for tp (transearth) use tp (translunar) (2f)

Furthermore, a fixed value of iVT L may rep-

resent either an inject north or inject south case,
i.e., the image trajectory can be reflected below

or above the MOP as well. For instance, in the
above sketch the translunar injection is direct
north. Since the MOP is a plane of symmetry,
the image or translunar trajectory can also be
reflected below the MOP to obtain a direct inject-
south case for which the trajectory parameters
at the moon must be interpreted properly. The
rules governing the interpretation for the opposite

t
case are:

for iVT E use iVT L (3a)

for 0MT E use -0MT L (3b)

for i m (transearth) use i m (translunar) (3c)

for tiM0 (transearth) use -_M0 (trans-

lunar) (3d)

t For instance, if the transearth trajectory is
direct north, the translunar trajectory is opposite,
i.e., direct south (see example in Fig. 4 of
catalogue).
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for /xV (transearth injection) use

Z_V (see definition in Chapter VI) (3e)

for tp (transearth) use tp (translunar) (3f)

for V 0 use V 0 (3g)

If the transearth trajectories in the catalogue

are interpreted as translunar data, the injection

conditions at earth need further discussion. The

transearth data is for an injection altitude h 0 of

183 km,and the injection flight path angle 70 is

0 °. The injection velocity V 0 is included in the

catalogue along with the injection position 90

(see Chapter VI for definition). The function 90

is discontinuous when iVT L is 0 °or 180 °due to

a singularity in the equations of the Voice program

when iVT L = 0 °or 180 °. However, this feature

does not detract from the usefulness of the data

for mission planning purposes since the value

iVT L : 180 ° represents unlikely retrograde in-

jections, and the singularity iVT L = 0 ° invalidates

Voice data for mission planning if iVT L < i0

for the inject-south or the inject-north cases.

The translunar in3"ection conditions of h 0, V0,

90 and ?0 can be extended to include other injection

conditions by the use of the empirical relationships,

Eqs (1) and (2), given in Chapter VI, Section A.

As pointed out previously, the translunar tra-

jectories in this Cllapter are not of the circum-

lunar class but of the approach class (Chapter IV).

Two major advantages are to be gained by the use

of the approach class of translunar trajectories.

(i)

(2)

The freedom in selecting landing sites
or surveillance areas

The relative freedom in choosing a
flight time to the moon. Although ac-

cessibility of lunar areas is vastly
improved by the use of these trajectories,

the problems associated with mission

abort near the moon before entering
lunar orbit make this approach more

risky.

B. MIDCOUfISE GUIDANCE

AND ENERGY REQUIREMENTS

The navigation and guidance techniques pre-
sented in Chapter VI are also applicable to the

transearth phase of a lunar mission and therefore

will not be discussed further. However, there

are some brief comments to be made regarding
the energy requirements of this phase.

For circumlunar trajectories it is very dif-

ficult to determine the velocity impulses AV TOT

for the transearth portion of the trajectory be-

cause midcourse corrections are applied during

the translunar phase. These corrections may

be designed to return the errant trajectory back

to a nominal trajectory or to ensure arrival at

a specific aim point near the moon (not neces-

sarily matching a nominal). Therefore the trans-

earth trajectory depends on the accuracy of
these translunar mideourse corrections and the

off-nominal conditions of ira, 0M, hpL and

t at the moon. It was emphasized in Chapter
P

VI that very stringent requirements exist on the

trajectory at given instants of time if mission

specifications are to be fulfilled.

The sensitivity of transearth vacuum perigee

to variations in pericynthion altitude, hpL ,

varies over a wide range, and a factor of 10 is

not unreasonable. Not only does the return

vacuum perigee altitude vary, but the transearth

inclination, iVTE, and the time of re-entry also

vary, making the task of returning to a pre-
scribed point on earth even more difficult. Un-

less midcourse corrections are made to reach

the correct pericynthion altitude at the right
time and orientation, the distortion in the trans-

earth trajectory may require large transearth

midcourse guidance corrections. A circumlunar

trajectory will thus require multiple midcourse

guidance corrections, one or more during the

translunar phase, one at or near pericynthion,

and one or more during the transearth phase.

1. Energy Requirements for Transearth Portion

of Circumlunar Trajectories

If the first guidance concept given in Chapter

VI with the aim point at pericynthion is used,
then difficulties arise in simultaneous control

of the four prime variables im, 0M, hpL and

t at pericynthion which, in turn, control the
P

transearth trajectory. Most likely a statistical

approach will be used to determine the trans-

earth guidance requirements for this concept.

For the second concept, which is designed to

return the spacecraft to the nominal trajectory

prior to reaching the moon, the difficulty may
arise from the small differences between the re-

quired velocity corrections and the accuracy to

which the spacecraftls velocity vector is known
at the time of correction.

In order to gain at least some insight to the

transearth energy requirements, it is assumed

that the final translunar midcourse guidance cor-

rection (for a typical circumlunar trajectory of

Chapter V-I) by use of guidance concept 2 is not

made. In this ease the spacecraft continues its

trajectory around the moon with no further cor-

rections until it is on the transearth portion

some distance from the moon. The transearth

midcourse correction is assumed at t I = I05 hr

after translunar injection, 106,000 km from the

moon. This correction is designed to return

the spacecraft to the nominal transearth trajectory

at various times t2 which vary from 120 hr after

injection to perigee. The total mission time

(from injection to perigee) is approximately 151 hr
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and the magnitude of the final translunar correction

which is not made is AV of 0.7 m/see. The fol-
V

lowing sketch shows the total corrective velocity

requirements for the above conditions.

true if the guidance technique uses a phantom

satellite as the aim point as discussed in Chapter

V. The standard deviation in velocity, i.e. , the

la error in the velocity, is assumed to be 0. 3

m/sec in each coordinate direction, x v, Yv' Zv'

v
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The magnitude of the required corrections,

although felt to be quite conservative, indicates

the need of controlling the translunar trajectory

as closely as possible. The omission of a

_V of 0. 7 m/sec correction durin_ the translunar
v

trajectory at t : 50 hr results in a required 20

m/sec correction (at t I = 105 hr) on the transearth

trajectory. Also included in the sketch is data
for an initial transearth midcourse correction at

t I = 115 hr. The data shows the expected trends

of reduced AV TOT for corrections made as early

as possible and reduction of the total zkV TOT as

the aim point approaches transearth vacuum

perigee.

The initial correction times (t I) assumed

ensure that the vehicle position at t I is sufficiently

beyond the effect of the moon t s gravitational field
to allow reasonable prediction of position and ve-

locity at perigee. The previous sketch illustrates

the necessity of obtaining ample position and

velocity data as soon as possible after entering

a region where reasonably accurate return mid-

course guidance corrections can be computed.

2. Requirements for Transearth Trajectories

Originating at the Moon

For transearth trajectories established from

a lunar orbit, errors arise mainly from the ability

of the guidance system to control the injection ve-

locity vector. Although the correct position at

transearth injection is also important, the intrinsic

nature of the guidance concept to be used tends to

keep position errors small. This is especially

where x is along the local horizontal in the flight
V

direction, z is in the direction of the local vertical
V

and Yv complete_ the right-handed Cartesian co-

ordinate system by defining a lateral direction

normal to the trajectory plane. Injection velocity
errors reflect a three-dimensional 99% probability

(3.368_). The velocity error at transearth in-

jection is propagated to a position corresponding

to the point at t I = 105 hr used in the circumlunar

case above. The previous sketch presents the

initial (position) velocity correction {_ V ), the
P

final (velocity) correction (Av v) and AVTo T,

the total impulse required. As in the translunar
case, the initial correction, made at the 105-hr

point, corrects the position of the spacecraft so

that it intcrcepts the nominal transearth trajectory

at a predetermined aim position and time. This
aim point has been varied from the 120-hr point to

perigee on the sketch and the final correction at

the aim point reorients the spacecraft,s velocity

vector along the nominal trajectory with the cor-
rect magnitude° The data presented in the sketch

represents the highest midcourse energy require-
ments and as noted, it exhibits the same trends

as the circumlunar trajectory of the previous sub-
section.

Guidance accuracy requirements have been

discussed qualitatively in Subsection C-2c of

Chapter VI with some reference to quantitative

data given in that subsection. Again the discussion
applies to midcourse guidance and energy require-

ments of translunar as well as transearth trajectories.
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X. EARTH RETURN

This chapter presents the flight mechanics

and guidance aspects of earth return. The mate-

rial is discussed mostly in qualitative form, with

the required trajectory equations and methods of

solution given. For re-entry into the earth's

atmosphere the limiting factors in the selection

of the trajectory are not so much the ultimate

aerodynamic performance of the re-entry vehicle,

which could be augmented by rocket acceleration

or deceleration, but the properties of the earthWs

atmosphere itself, which provide two design limits:

(i) Upper limit on the steepness of re-entry

because of high decelerations.

(2) Lower limit on the steepness due to

high aerodynamic heating or a "skipping"

out of the atmosphere if insufficient

dissipation of the vehicle's kinetic

energy occurs.

A complete description of earth return would

thus include a description of the earth's atmosphere,

the aerodynamic forces and the resulting decelera-

tion and heating of the re-entry vehicle. The prop-

erties of the earth's atmosphere have been dis-

cussed briefly in Chapter II and in more detail in

Chapter II of Ref. i. The form of the aerodynamic

lift and drag terms, which become numerically

very large during re-entry, has been given in

Section B of Chapter IV. The present chapter

discusses the techniques of re-entry, the timing

of re-entry for specified lunar mission constraints,

and the aerodynamic performance of and trajectory

requirements for the re-entry vehicle. The aero-

dynamic heating aspect of re-entry (with equations

for estimating convective, conductive, radiative

heating in hypersonic flow and the flow field around

the vehicle, thus giving the heat balance and tem-

perature for portions of the re-entry vehicle) has

been given in Chapter IX of Ref. I, and Chapter XII

of Ref. 2. Aerodynamic heating is of prime con-

cern during a re-entry; practically all of the

vehicle's kinetic energ_f must be dissipated in

the form of heat. Most materials can only absorb

a fraction of this heat energy without melting or

evaporating; consequently the dissipated kinetic

energy must be made to heat the gas around the
body rather than the body itself.

Section A of this chapter discusses qualitatively

the timing of the return and the transearth and

translunar trajectory parameters which are af-

fected by this timing if landing at a specific earth

site is desired.

Section B discusses re-entry by atmospheric

deceleration. In this technique a large portion of

the kinetic energy of the re-entering space vehicle

is converted to heat by the action of atmospheric

drag until the speed of the vehicle is slow enough

to permit a landing without damage to the struc-

ture and the occupants, if any. The aerodynamic

maneuvering capability of the vehicle is discussed

in Subsection B-4 and the techniques for guiding the

re-entry vehicle to a landing in Subsection B-5.

Section C discusses earth re-entry by use of

rocket and/or atmospheric deceleration to reduce

the space vehicle speed from the supercircular

approach speed of m ii kin/see to a circular

orbit velocity of _8 km/sec. The vehicle may

then remain in earth satellite orbit until such

time that re-entry from orbit to a specific landing

site can be accomplished. An important part of

this technique, the determination of call-down

frequency, has been discussed in some detail

and the conditions for a recall to a specific site

have been derived.

This chapter completes the discussion of the

different phases of a lunar trajectory which was

started with earth departure in Chapter V. The

material in these chapters consisted of a dis-

cussion of techniques and requirements for each

trajectory phase, as well as an attempt to cata-

logue all earth-to-moon trajectories of interest

from Cape Canaveral and moon-to-earth trajec-

tories from lunar satellite orbits to an arbitrary

earth landing site. The task remains to combine
the material on vehicle environment in Chapter II,

on the geometry in Chapter III, the dynamics of
Chapter IV and the detailed discussion of the tra-

jectory phases in Chapters V to X and then to

illustrate the application of this material to the

preliminary design of a specific lunar mission.

This task will be taken up in Chapter XI.

A. LANDING AT A SPECIFIC EARTH SITE

For manned and many unmanned lunar ntis-

sions, operational concepts dictate the recovery
of the spacecraft after the completion of the mis-

sion. Planning for recovery of the spacecraft

will be based on landing in one of a few relatively
small areas since only small areas on earth can

provide adequate tracking facilities during re-
entry and the recovery forces and facilities can

be deployed in only a few restricted areas. In

addition, the climate, the terrain and political
considerations will also limit the available land-

ing areas. Even abort trajectories can be planned

to result in vehicle return to specified landing

areas as discussed in Section D of Chapter VI.

Only dire emergencies will require indiscrimi-

nate earth return and landing, namely when the

survival of the space vehicle crew depends on it.

Once one or more landing sites have been

selected, the timing of the mission must be de-

signed to result in a landing at that site. For

lunar missions the timing is a major problem

and it is ti_e first one attacked as illustrated b) the
two sample missions in Section G of Chapter X1.

The timing problem can be solved during earth

departure, at injection by choice of a suitable

flight time, on the moon, or by use of parking

orbits on earth return. In any case, timing de-

pends on the particular trajectory class selected
(see Chapter IV for further definition and classi-

fication of lunar trajectories).

With a circumlunar trajectory class that is

designed to directly re-enter the earth's atmos-

phere at the end of the transcarth portion of the

trajectory, a major tinting problem arises since
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for a directre-entry thelandingwill occursoon
after re-entryand,therefore,will requirethat
thelandingsitebecloseto there-entrytra-
jectoryplane. Thereforethecircumlunarmis-
sionmustbeplannedatthetimeof launch(from
earth)to possessatotal flight timethatallows
thedesignatedlandingsite to rotatebeneaththe
transearthtrajectoryplaneatre-entryor at
leastwithinthemaneuveringcapabilityofthere-
entryvehicle. For agivenlunararrival dateor
timeofthemonth,theearth-moondistanceR_¢
maybeassumedconstantfor afewhoursbefore
andafterthearrival date.

The allowable iVT L (Section D, Chapter XI)

and the resulting iVT E for a given hpL also

remain essentially constant. With these mission

constraints, there is a corresponding total flight

time, T (from launch to injection--to pericynthion--

to earth re-entry). Now, if the earth landing

site is not in the correct position relative to the

transearth plane at re-entry (which is the general

case) an adjustment in T is necessary. One way

of obtaining this adjustment without the expenditure

of energy is to alter hpL since it is the only re-

maining parameter that affects T for a given

arrival date. This is most clearly illustrated in

Fig. 1 for two designated landing sites, namely,
Australia and Edwards AFB. It is worthwhile to

note here that the maximum and minimum hpL

required to acquire these two sites occur either

at the maximum southerly or maximum northerly

declination. Furthermore, note that the re-entry
range required to reach the sites varies con-

siderably.

If the mission specifically states that hpL

remains constant, then the adjustment in T must

be achieved by means of a transearth adjustment

maneuver as explained in Section E, Chapter XI.
This midcourse maneuver does not alter the trans-

earth inclination iV,rE but only advances or delays

the time at which re-entry occurs.

An alternative to the transearth adjustment

maneuver is to allow the spacecraft to arrive at

earth without consideration to site location. At

approximately the time of perigee, an orbital

entry maneuver is executed which places the space-

craft in a close earth orbit where the spacecraft

stays until the proper position of the landing site

relative to the vehicle is achieved, before de-

orbit, re-entry, and a landing is attempted.

The discussion thus far implicitly assumes

that the acquisition of a particular lunar satellite

orbit orientation defined by the i m - @I_i relation-

ship (see Section A of Chapter XI) is not a mis-

sion requirement. However, if the spacecraft

must have a specific i m - @M combination, then

iVT E will depend on and be in error with the de-

sired iVT E. Thus, in addition to making ad-

justments in total flight time to time a given land-

ing site, it also becomes necessary to make a

transearth planar change A iVT E for the three

cases mentioned above. This maneuver and the

corresponding energy requirements are discussed

in detail in Section E of Chapter X-I.

For a transearth trajectory that originates at

the moon and returns a spacecraft to earth, the

problem of returning to a specific earth site is
not as formidable as for the circumlunar class

since flight time is not constrained (see Chapters
IX and XI). There are certain ramifications, how-

ever, especially if the lunar departure is conducted

from a pre-established orbit resulting from lunar

rendezvous or parking orbit requirements. In this
case the return time can still be controlled but the

return inclination iVT E may have to he adjusted.

In summary, the timing problem associated

with returning a spacecraft to a designated earth

landing or recovery area can be solved at different
times during the mission. For circumlunar tra-

jectories the problem may be resolved at launch

or in parking orbit prior to translunar injection,

along the transearth trajectory, or at the com-

pletion of a mission (parking orbit at earth return).

In the case of transearth trajectories established

at the moon, the timing problem is resolved prior

to lunar liftoff or lunar orbit departure. It must

be remembered that in connection with the timing

problem, it can be generally stated that a trans-

earth midcourse correction of iVT E is also re-
quired.

B. RE-ENTRY BY ATMOSPHERIC

DECELERATION

A very efficient technique for recovery of lunar
space vehicles after completion of the mission is

to decelerate the re-entry vehicle by dissipating
most of its kinetic energy in the earth's atmos-

phere without application of rocket thrust. For

this re-entry technique there is a weight penalty
in providinga heat shield, which protects the

vehicle by absorbing some of the heat generated,

but this weight penalty is far less than that of the

fuel required to reduce the vehicle velocity by

rocket deceleration. Atmospheric deceleration

of a vehicle returning from a lunar mission pre-

sents a more severe problem than it does for an

earth satellite. This fact is caused by the dif-
ferent speeds of the vehicles--ll km/sec for the
lunar vehicle and 8 km/sec for the earth vehicle.

However, the use of ablative heat shields in con-

trast to radiative and heat sink-type heat shields
makes it possible to re-enter the earthfs atmos-

phere with supercircular speeds, i.e., speeds

in excess of 8 km/sec, at least from the point of

view of theoretical thermodynamics. No vehicle
has as yet been re-entered and recovered intact

at supercircular speeds.

The re-entry portion of a trajectory is char-

acterized by the dominance or large size of the

aerodynamic forces as compared to the gravita-

tional force on the vehicle. Since most re-entry
trajectories are extremely short as compared to
earth satellite orbits, for conventional lunar

vehicles the presence of the atmosphere can be

neglected until the vehicle altitude first drops
below 122 kin. Of course, just as in the case of

earth satellites, the upper limit of the sensible

atmosphere depends on the ballistic coefficient

B = CDA/2M of the vehicle, the flight path angle
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andthevelocityVof thevehicle. Theapproach
trajectoryabove122kmfor conventionallunar
vehiclesandconventionalreturnmaybeconsidered
ballisticandtheinitial conditionsof there-entry
trajectorymaybecharacterizedbythe re-entry
velocityVRandthe re-entry flightpathangleI/R
occurringat analtitudeof 122kmasillustratedin
thefollowingsketch:

Local A

:'./_>j j Atmosphere

_ , For Reentry

Nothing prevents the use of the equations of

motion as given in Section B of Chapter IV and the

initial re-entry conditions to obtain the entire tra-

jectory by numerical integration on a digital com-
puter. Itowever, nonlifting vehicles with fixed

aerodynamic coefficients, as well as lifting vehicles

with variable aerodynamic coefficients, introduce

many trajectory parameters, so that a very large

number of numerically calculated trajectories
must be obtained before definite trends can be

established. In order to obtain an idea of re-entry

trajectory characteristics, approximate analytical
methods are preferable to numerical solutions just

as the Voice technique enabled the determination o1"

ballistic lunar trajectories more quickly anti ef-

ficiently than numerical integration of the more

complicated equations of motion. There exists no

analytic solution of the full equations of motion,

hence the qualifying statement that the analytic

solutions are only approximate.

i. Equations of Motion for a Shallow Re-entry

Consider re-entry into the atmosphere of a

spherically symmetric planet anti let the atmos-

phere be spherically symmetric in concentric

layers about the planet and be stationary with re-

spect to the planet. Neglect lateral aeroclynamic
forces as well as thrust forces. The resu]tb_g

descent is planar and one can introduce plane polar

coordinates r@A , O_ 5 =- r,O. The sketch below

shows the components of aerodynamic lift, aero-

dynamic drag and velocity in rids coordinate s).s-
tern.

Reentry

Trajectory
e

/),4, i ,,;.';.,;),,

Hence the two component equations of motion in

the plane polar" coordinate system are as follows:

2
dv u L D

- d'_- = g - T - _ cos )' + _ sin T (1)

du LIV D 1

+ (cos)' + _v sin T)d-Y -7- = - lJ
(2)

w he re

t = time

K = local acceleration due to gravity

5'I = vehicle mass (constant)

)I = flight path angle at any time.

In order to obtain an approximate analytical

solution, ('h'd])lYL,ttl] (Hcf. 3) introducc._ ',', Z-t'tliwtion.

w h c t "e

# = free stream olmospheric densit3', kg,,
m 3

C D = dra_ coefficient, C D -
1 V 2
_p A

9 2 9
\,'_ = u + v" = vehicle velocity squared

A = vehicle reference area

= logarithmic atmospheric density gra-
-1

dient in units of m

d
d r (£n O ) -

1 do_. _ g
0 d r R %I"

joules = gas constantR:" = 8. 31439 x 103 o K_kg

T = local temperature of the ambient

atmosphere in °K

_--_ = molecular weight of the atmosphere

= u is a dimensionless horizontal

_" _city parameter.

Chapman (Hcf. 3) then makes the assumption that

the re-entry is shallow (or T is small duringcntry),

so that cost T 1, sin)' _Y, V %u, I(Ltl)) tanTI

<<1.

With the shallow re-entry consumption, the

introduction of ffas the independent and Z as

dependent variable, the two equations of motion
(1) and (2) reduce to a single ordinary' nonlinear

second-order differential equation. This trans-

formed equation of motion is given here together

with the physical interpretation of the terms:
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-2
z" (z' - z) 1 - u 4- - cos 7:

_ gZ
_-__.v___J

vertical vertical gravitv minus

acceleration component cenl ri fugal

of drag force
force

specific re-cntr\/ trajectories such as constant angle

of attack, constant altitude, constant net accelera-

tion, modulated roll trajectories, etc.

Of course, attention should be given to the as-
sulllptions 1]lade in ti_e above references to ensure

applicability to re-entry trajectories in question.

Only the [4eneral results obtained in l_efs. 3 to 14

are discussed in this chapter and the reader is

referre_t to lhese references for complete details
and mathematical developments.

I_ 3
_-_ I5 cos _'

lift force

(41

with the initial conditions

1

(4a)

The autlior li_en examines the structure of l';q (4)

with the initial conditions representin£ re-entr)
conditions and finds that ti_ree dimensionless

parameters determine the motion durin_ shallow

rc-e _try: the re-entry velocit 3 p;_r:_n_,'tcrs (_,:1_)i =

(VH/ _)i' the lift tn_ralnclcr 1,/I) _ and the

perigee parameter

t

i, pi.2 = PPE I[
['l >}_-

2, 9_| , ' _ , (4'))

where tile subscript "PE" refers to '<acuun_ periKee

of the earth return trajcetor>.

These parameters are then utilized to find safe

re-entry corridor depths (for a complete definition

of re-entry corridor Gee Subsection B-3) thai are

extremely useful in comparing various re-entry

vehicle configurations and trajectories, l)cuclera-

tion load factors, _uidance requiremcnls, re-entry
ranf4c, heating rates and I_/I) effects can also be

accurately (tote rlninc(] f'l'o Ill |he,q(? t)a Fa ilK!to t's.

[,uidens (Ilef. 4) presents chased form solutions

of many engineerinK parameters of interest for

2. Qualitative I)escrit)tion of Re-entry

The equations governin£ re-entry as well as the

results obtained fronl these equations by numerical

or analytical methods point out the imt)ortance of

the flight path an£1c )'1{ at re-entry (in R = 122 km

for conventional vehicles). It is ahvays negative
since otherwise ihc vctdcte could not lose alt_lude

alld l'c -enter.

If [y is large, the initial approach to the

earthrs at|nosphere is Vel'y steep and actual re-

entry is accomplished in a matter of seconds.

This situation is analogous to a bullet bein_ brought
to a conlplcte stop ill a very short time. The re-

suit is a tremendous deceleration that is beyond
both human and structural endurance.

It' t7.' R] is vet-), small, line approach to the

earth's atmosphere is very shallow, tile equation

or motion, Eq (4), applies directly and this case

ma>. be likened to the ricochet of a bullet; i.e.,

for hi£hly elliptic, parabolic and hyperbolic ap-

proaehc_ ihe vehicle "_kips" out ()i' the atmosphere

in :_ slill hit{hly o('eelltrJc orbit. Ttne phenomenon

of skipl)intt out has been suggested by Chapman
(l{ef. 5) as a tceimique to re-enter tile earth's

atnlo_phevc v_:r 5 slowly, and multiple-pass at-
mospi_ez'ic deceleration entries are of interest

R>r several reasons, one of which is that tiley

fn'o_ide a means of minimizin_ aerodynamic

hcatin£. For cxampte, in an entry which first

makes a number of supcrcircular passes througln

lhc other ed£e of the attar)sphere until tlne velocity

is reduced to circular velocity and then completes
lhc suhcircular portion of entry with a sizable

positive (see sketch) L/l), the decelerations ex-

perienced (and ti_e rat<_s (>f aer'odsnamic heating)

can bc kept relatively small.

// .

*too  .e:e X \, \
For Reentry [' / "'" , _\ \ %t_th P_ \

Trajectory X _ _-_ _

_','n/,i _s
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It is shown in t{ef. 3 that for ballistic entries

(L/D : 0) six supercircular passes wouhl be re-

quirect to kee t) the maximum he[tin K rates about
the same as [host experienced during the termb,at

subcircular portion of entry. Since each pass is

followed by a substantial period wherein the struc-

ture may cool as the vehicle orbits in preparation

for a subsequent atmospheric pass, this method

provides an attractive possibility for utilizing the

combined heat sink and radiative capability of tile

structure. If the re-entry body is a liftin£ vehicle

(L/D _ 0), then it can be roiled during the atmos-

pheric portion of the trajectory to produce a side

force which changes the inclination and nodal line

of the vehicle orbiL in inertial sp_ec. This nluneuver

which does nut require rocket fuel mav correct any

small timintt and trajectory errors.

At least two important problems arise for

multiple-pass atmospheric re-entries: tht,y could

require multiple passes through tile Van Allen

radiation belt, anti they require an especially

accurate re-entry guidance system (to produce

the desired trajectory). For these two reasons,

such a re-entry technique is considered somewbat

impractical at this _inle.

tlowever, there is a ref4ion of moderate values

of yRI, which allows the vehicle to re-enter ill a

singhVpass, provR ec that tile heating and/or de-

celeration are not excessive for the returning
vehicle.

Tile preceding qualitative discussion indicates

that the direction of tile re-entry velocity vector

V R must be controlled so that the penetration is

neither too steep nor too shallow to assure tile

planned re-entry. Thus for a given type of re-

cntrs', be it siugle pass or mu/tfph_ pass, there

exists a small region of V R, )'it which enables this

particuhtr thpe or c_ltrv. This region can be de-

sccibed b) tile concept of re-entry corridor which
is derined in detail [n thu next subsection.

The effect of ? t1 on tile type of re-entry has

been discussed above. As for \ll' as V R increases

tile re-eIltrv corri(Ior |)eeolnes i]arl'o\ver because

with increasing VII more kinetic energy must be

dissipated prior to landin£; hence the healing and

deceleration encounte Fed l)y the vehicle bt!c()llle

more severe. To i'emain in the reduced re-entry

corridor, the SUl)ereireular atmosl)herie eHtry

required for[ dil'eet retuFt/ fronl lt]{_ IIlOOll rleees-

sitates a nlLleh lilore LLccur[tte guidatlee s,yslc I

than that required for the circular entry of close
earth satellites.

3. l)efinition of (!l_rridor I;epth

A safe re-entry corridor del)th as i_ropt)sed by

Chapnxtn (Ih'l'. 5) depends (m the r'undershoot" anti
rl T - -

()%el s loot )OLIHfIaFI({S peculiar to lhe confiEllralion

of th(' re-entr.\ x(ddcht. The Lllldersho()t t)Oulqdal'.\ t

is defined :is tlne steepest altl)t'oach to lhe _ttlll()s-

phcre that the ',eh[cke ran uur/eFtake without ex-

eee(lin£ structural ()r hLl_ll£1I] (le(_t!leFtltion limils

during the re-entr.v phase. Lsua]ly the maximum
deeeleratitln, also ualled the maximum loud factor,

of I0 £0 i.< sp('cil'ied.

The overshoot boundary is referred to as the

"shallowest" atlproaell that can be taken with a

particular vehicle to be captured by the atmos-

pllere within one _'evolution around tile earth,

i.e. , tile sinffle pass re-entry. These boundaries

are illustrated in the next sketch by assuming two

near-par[belie conic sections (which are repre-

sentative of transearth lrajeetory paths prior to
the re-entry l)hase) intersecting tile earth's at-

mosphere • . One conic section represents tile

undershoot I/ountlary trajectory, and the, olh_,r tb,

overshoot boundary trajectory. If tile earth anti

its atmosphere are ignored for the moment, then

the initial conic trajectories continue to their
respective VGCUUlII ]]el'ig('(!g its S}]o_vI] bv tit('

dashed lines in the sketch. These conic trajec-

tories are nomnally referred to as "vacuum tra-

jectories. "

Since re-entry is eonMdere(] to occur at

h R = 122 km with a near'ly constant VR, the dif-

ference in y R results in vacuum perigee of the

overshoot boundary which is usually higher than

that of the undershoot boundary. Thus, tile safe

re-entry corridor can also be defined by a safe

corridor depth, namely the ttifference in vacuum

perigee altitudes AhpE = In pE 1 - hpE2 between

tile two vacuum trajectories.

The procedure that is used in obtaining tile

undershoot boundary is to change the configuration

or to trim the lifting body re-entry vehicle close

to its maximum lift-to-drag ratio (L/I))ma x at

the re-entry point. This trim attitude is main-

taincd until the maximum load factor or heating
rate is encountered.

There are several methods that call be used to

establish an overshoot boundary For example,

there is the "single pass overshoot," defined as

the maximum vacuum perigee altitude at which

the vehicle can enter at ulaximum negative lift

coefficient (-C L ) and land within a range of
II]&X

one earth's circumference from the entry point.

Another method uses tile same technique (-('L )
i'll a x

but the overshoot boundary is based on an abrupt

si?ortenfng in range to impact. The difference in

overshoot )' l{ between these two methods is ap-

proximately 0. 05 ° , which is equivalent to approxi-

mately 1 km in corridor depth.

Still another method defines the -CI_ over-
nlax

shoot boundur 5 as the maximum perigee altitude at
which the vehicle can enter at -(' and remain

L
111 LI X

withiu tilt! utl]/ospllt'l'e (h < 122 kin). This bound_tr>
lies s()m(,wh(u'e bel<een that of the two former

mcth<,d._, _md tit(, matter point to recognize is that

tile ill)eve overshoot methorts have negligible effects

on the corridor depths.

A final m(!th(_d considers the possibilit,_ of an

enlcr_cnc:< situation it; which knowledge of the

exact ce-entF.,_ coIMiiions is not available. Define

Ill(' a(_F(ldynanlic lil'l ('oeffieienl C L by eL, :

1 \,2 and denote its maxinlunl value by C L
7 p A max
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The positive C L overshoot boundary is defined

max

as the maximum perigee altitude for which the

vehicle can enter at positive C L to the point
max

where v = 0 ° (arbitrary) at which time -C L is
max

applied and the vehicle is able to remain within the

atmosphere. The purpose of introducing this defini-
tion is to illustrate the reduction in corridor depth

that would occur if entry into the atmosphere with-

out precise flight path angle information were

necessary. For example, in this emergency, the

vehicle would have to enter at positive lift until it

is determined (from a load factor time history,

e. g. ) that an overshoot condition exists. Once this

is determined, negative lift would then be applied.

This overshoot boundary is approximately 9 to 13

km below the negative boundary. From
C Lmax

Chapman (Ref. 3), it is possible to determine

undershoot and overshoot boundaries as a function

of the lifting body re-entry vehicle's L/D, and

ballistic parameter, W/CDA = g0/2B. Figure 2

shows both boundaries with the undershoot boundary

limited to i0 go" It is assumed that C L and C D are

constant, and that VI_ = 10.67 kin/see at hl_ = 122

km. The C L, C D relationships used are those pre-

sented in l_ef. 5. It is further assumed that C u
max

applied negatively on the overshoot boundaries

and (L/D)ma x on the undershoot boundaries re-

sult in the maximum corridor depths. In Fig.

2 both boundaries are shown, t_reby allowing

the corridor depth to be determined directly.

The associated Vl% is also included in the figure.

Although the results of such a parametric presen-

tation are limited by the particular selection of

C L and CD, important trends can nevertheless

be established from Fig. 2:

(1) Corridor depth is independent of

W/CDA i1' W/CDA is the same for

undershoot and overshoot boundaries.

(2) Overshoot perigee altitude is primar-

ily a function of W/C LA attainable.

(3) Undershoot perigee altitude for a

constant value of W/CDA is decreased

significantly by relatively low values

of L/D. As L/D increases beyond
1.0, the benefits become less.

(4) For ballistic re-entry (i. e., L/D = 0),

the corridor depth is only 12.8 km for

a 10-g 0 maximum undershoot boundary.

The effect of VI% on corridor depth is shown

in Fig. 3, which was also obtained from Ref. 5.

The corridor depth variation with V R to a 10-g 0

undershoot boundary is presented for several
values of L/D.

A deceleration-limited undershoot boundary is

affected not only by the maximum value of go se-

lected, but also by the particular way in which the

L/D is monitored. The material presented thus

far has concerned re-entry at constant lift and

drag coefficients. Grant (Ref. 6) and Levy (Ref.
7) have indicated that substantial increases in

corridor depth can be gained by employing var-

iations of C L during re-entry. Such re-entries

are commoniy referred to as modulated re-entries.

For a spacecraft entering the atmosphere at a

given initial VR, ,tR, W/CDA and L/D, the de-

celeration varies directly as the dynamic pres-

1 V 2 for an unmodulated re-entry.sure q = _ p0 °

As the vehicle descends into the atmosphere, the

dynamic pressure and, hence, the deceleration
increase to a maximum value and then decrease.

A typical deceleration time-history for an unmod-

ulated entry is shown in the next sketch. To main-
tain the maximum deceleration at a vaiue lower

than the peak value of the unmodulated entry (see

dashed curve in following sketch), the coefficient

C R of the resultant aerodynamic force R, C R =

R
, is continuously decreased to compen-

1 _ V2_0 A

sate for the increase in dynamic pressure.

The term 'modulated re-entry' is somewhat

ambiguous since it is necessary to modulate lift

during almost all lifting re-entries at some time
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prior to landing in order to stay within the design

limitations of the vehicle or to avoid atmospheric

exit to extreme altitudes. Modulated re-entries,

therefore, refer to re-entries in which lift and/

or drag are modulated prior to the first maxima

of load factor or heating rate. Constant L/D re-

entries are those in which C L and C D are constant

only until the initial maxima of load factor or heat-

ing rate are reached. Typically, a drag polar or

C L versus C D curve for a particular vehicle takes

the form shown in the sketch below.

C Lm a-x

Direction of

Increasing

Angle of Attack_Q

__ C D

C D
CDmin max

It was found by Grant that, for a given vehicle

configuration entering at given values of VR, MR'

the lowest possible maximum deceleration can be

obtained if entry is initiated at the value of C R for

C L and C R is continuously decreased to the
max

value at C D This result suggests the ratio
min

C R at CDmin to C R at CLmax as a parameter with

which to correlate the m_xilnum reduction in peak
acceleration. The ratio of minimum load factor

go max for moduh_ted entries to go max for unmod-

ulated entries is shown in Fig. 4 as a function of

the ratio of C R at C D to C R at CLmax for arain

wide range of values of VR, Yl:{' M/CDA, and

L/Dma x. It is also interesting to show this ratio,

) mod/(g 0 max ) unmod as a function of(go max ".

(L/D)ma x. This is done in Fig. 5 for a typical

family of vehicles that are modulated from C L
max

to C L = 0 and C L to (L/D)ma x. Observe the
max

appreciable gains up to an (I,/D)ma x value of unity

after which it is evident that diminishing returns

occur. The data presented it_ Fig. 5 can then be

factored with Chapmant s results for constant

CL, C D (Fig. 2) to give the 10-g 0 modulated re-

entry corridors. Figure 6 presents such results

for the case of modulation from C L to C L = 0.
max

Comparison of Figs. 2 and 6 indicates the large

improvements in corridor depths that are obtained

through re-entry modulation. For example, the

10-g 0 single-pass re-entry corridor for a vehich'
nt

with L/D = 1.0 and W/CDA = 4790---_ (100 lb/ft 2)
m

is increased from 96 km to 226 km by modulation.

The maximum load factor has been the only

determining parameter of the undershoot boundary

in the results presented. In some instances, aero-

dynamic heating may represent more severe lim-

itation than load factor in determining the vehicle's

boundary. In such cases, the heating rate-limited

(qH) or total heat-limited (QH } re-entry corridors

would replace the overshoot corridor and possibly

the undershoot corridor as well. This is based on

the fact_hat, as the overshoot boundary is approached,
the amount of total convective heat absorbed at the

stagnation point increases almost exponentially for

all longitudinal ranges, since the vehicle is required

to spend a greater portion of the flight trajectory in

the atmosphere. An increase in the total heat load

would eventually result in exceeding the original

heat shield material design limit, thereby restrict-

ing the allowable range as the boundary is approached.

Since the amount of heat absorbed for a given ]'[{

varies with longitudinal range, the allowable limit

is encountered at different entry angles for various

values of re-entry range.

These factors led to the development of an
"operational corridor" concept (l{ef. 8) wherein

the overshoot boundary is defined as the minimum

entry angle for which the heat-load limit was not

exceeded. This concept is illustrated in Fig. 7.

Note that the heat-limited overshoot boundary is

a function of the maximum required re-entry range.

In other words, if the re-entry range required to

fulfill operational considerations is large, the heat

limit may define the overshoot boundary. This

is altogether possible when reference is again made

to Fig. I where required range can easily reach
16,000 km for lunar returns.

4. Re-entry Maneuvering Capability

After re-entry within the safe re-entry cor-

ridor is assured, the problem of landing at a

specific site can be solved. In the case of a lift-

ing re-entry body, the vehicle uses its aerodynamic

characteristics as a means for maneuvering both

longitudinally and laterally from the re-entry cor-
ridor to the site, whereas, in the ease o1 a ballistic

(nonlifting body) re-entry, either rocket burning

prior to re-entry or a variable configuration can
be used to obtain some maneuverability.

a. Longitudinal maneuverability

The longitudinal maneuvering capability or

maneuvering in the re-entry trajectory plane is

primarily a function of the vehicle's L/Dma x

In the following sketch minimum and maximum

range trajectories of a vehicle are shown entering

along the undershoot and overshoot boandaries of the
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re-entrycorridor. Therangesegmentmarked"A"
cannotbereachedfrom anypointin thecorridor,
whereasthesegmentdenotedby "B" canbereached
onlyfrom restrictedportionsofthecorridor. Seg-
ment"C", entitled"MinimumDownrangeManeuver-
ingCapability," givestherangesegmentthatcanbe
reachedfrom anyinitial conditionswithinthecorri-
dor. Theactualvaluesof maximumandminimum

h = 122 km and h = 740 km are shown.
re:ix max

It can be seen that the maximum range depends

on the allowable hma x. Also superimposed on

Fig. 8 are the 10-g 0 and 6-g 0load factor limits

which verify that the minimum range obtainable

is primarily dependent on the allowable load fac-
tor.

©

Minimum Range/ /_x /- _ /

Minimum Range
From Undershoot Maximum Range

From Overshoot

range from overshoot and minimum range from

undershoot depend strongly upon the control tech-

niques used to obtain them. For example, the

overshoot re-entries are performed initially at

negative C L This value must be modified
max

after single-pass entry is assured or the vehicle

wiI1 experience excessive load factors. The man-

ner in which lift is modified by the control system

then determines the maneuverability that is ob-
tained. For ranges greater than 10,000 km, the

maximum altitude, h attained with undershoot
max '

maximum range trajectories, is larger than h R =

122 km (which results in skip re-entry trajectories);
and for ranges greater than 22, 000 km, penetration

of the inner Van Allen radiation belt takes place

since hma x > 740 km. Therefore, the particular

control technique used to restrict hma x becomes

the determining factor of maximum undershoot
range and therefore "minimum downrange maneuver-

ing " " "capabthty as well.

In order to gain an insight to the longitudinal re-

entry range capability, Fig. 8 is presented. In

this figure, longitudinal range as a function of L/D

is shown for the parameter YR" The assumptions

used in this figure are that V R = 11 km/see. WICDA

newton =
= 3350 _ (= 70 lbf/ft2), h R 122 kin, and L/D

m

= constant (constant angle of attack trajectory). In

addition to the range information, conditions for

b. Lateral maneuverability

The recovery problem implies the ability to
return the vehicle to some desired point on the

earth's surface. For direct entry from a lunar

or deep space mission, considerable variations

in re-entry point, re-entry angle, and re-entry

plane must be anticipated. The re-entry vehicle

must, therefore, not only possess the ability to
control its longitudinal range but its lateral or

cross range as well. In fact, the lateral range

capability of a vehicle during entry may be more
important than its longitudinal range capability.
Reference 15 shows that under certain conditions

a lateral range eapabiiity of ±90 km can possibly

allow a variation in time of re-entry of more than

three hours and variation in re-entry plane inclina-

tion iVE of as much as m13 °.

Lateral range is defined as the perpendicular

distance measured along the surface of the earth

from the landing point to the vertical plane con-

taining the original re-entry trajectory without

lateral maneuvers (see sketch).

References 15, 16, 17 and 18 discuss the

lateral maneuvering problem and resulting ma-

neuvering envelopes also referred to as "foot-

prints"; the reader is referred to these reports
for details. However, for the purposes of this

handbook, the following empirical equation is

given which estimates the lateral range llla t for

constant i.t D re -entries:
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Reentry

)
(_) _ al

maneuvering

Landing site _with lateral

maneuvering

Rla t _Lateral range

IIlat = (L/D) _n (V R) It 0 sill _ sin %

+ 1150 (L/D) 1.78 sin 24 (km) (5)

where

I%®: radius of the equivalent spherical earth
in km

= central angle to impact in degrees
C

£ = bank angle in degrees

VR= the re-entry speed in m/see

Equation (5) is applicable for bank angles _ < 80 °.

For a first order approximation to the maxi-

mum lateral range associated with a specific vehicle,

the following assumptions can be made (see Ref, 17)

_=45°' _c = 90 ° , V[% = 11 km/sec, [_ _ 6370 km

which reduces Eq (5) to the following:

(Rlat)ma x _- 1500(L/D) + 1150 (L/D)1.78 (km)

Equation (6) is shown in Fig. 9 and. as expected,

the higher the L/D, the greater the range capa-

bility.

Equation (5) can also be used to calculate approx-

imate maneuw;ring envelopes, but first it is nec-

essary to have consistent values of ¢c and [. This

may be achieved by making use of Fig. 8 which

gives the longitudinal range capability. If the L/D

values shown in Fig. 8 are considered to bc the

vertical component of L/D, then each of these

L/D's can be related:

= cos-1 (L/D) Nigh. 8
vehicle

Thus, if a vehicle L/D is selected, Fig. 8 can be

interpreted as giving range versus bank angle for

various re-entry angles, i.e.,

£(dcg) _u_dinal re-entry range in kr__
- = -- 111 km/dog

(7)

Now if Eqs. (5), (6) and (7) are used jointJy, then

approximate maneuvering envelopes similar to
the one shown in the next sketch can be _enevated.

This ( reply|ca] method implies that [ is establishc_l

at the time of re-el]tl'_'.

Two maneuvering envelopes developed by this

method are included in Figs. 10 and 11 for y|{ =

-5.5 ° and YI% = -7.75 °, respectiw!ly. It should

be kept in mind that these envelopes are for re-

entries in which bank angles, C L and CD, are

maintained at constant values throughout the re-

entry. The envelopes clearly show the effective-
ness of L/D in increasing the size of the maneuver-

ing envelope. By comparing Figs. 10 and 11, an
indication of the effect of corridor depth on the

envelopes can also be obtained. The lower the

(L/D)max of a vehicle, the greater is the reduc-

tion in maximum lateral range with increasing

corridor depth. This reduction in lateral range

is less affected for vehicles with (L/D)ma x >0.5

(not shown).

"c-9 / lat

/Landing can take place ]

anywhere within this /

Of course, the information presented here is
somewhat restrictive, but the same procedure

can be followed to suit specific needs. However,

when investigating vehicle capability beyond pre-

liminary stages, it is obvious that such methods
are insufficient.

In summary, the more significant factors that

influence the maneuvering capability of a given

vehicle of fixed (L/D)ma x are:

(1) A reduction in the maximum allowable
loud factor increases the minimunl

longitudinal range a vehicle can achieve.
Since the load factor increases with bank

angle due to the centrffuf4al force, there

is a limiting bank angle for a given load
factor tolerance of the vehicle. The cor-

ridor depth decreases with inereasing

values of the limiting bank angle but the

minimum longitudinal range is relatively
in_'ensitive to it.

(2) The maximum allowable apogee altitude,

hma X, limits tlu. nlaxinltlT_] range of

constant l,/l) skip trajectories. [low-
ever. if lift and drag are varied to con-

trol atmospheric exit conditions, the

restriction on Fange becomes primarily
a function of the (l_/l)) of the vehicle.

I21 _t X

[Iigh I./l)_s allow more modulation or re-

cFltl? traljeclorv sh:tpit]g than ]<_r I_/I)'s,
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(3) Theminimumallowabledynamicpressure,
dictatedbyarequirementfor aerodynam-
ic control, limits themaximumrangeof
someclassesof nonexittrajectories.

(4) The range guidance and control technique

has a strong influence on the maximum

longitudinal and lateral range capability

and also on the minimum longitudinal

range.

5. Re-entry Guidance Techniques

A vehicle directly entering the earth's atmos-

phere upon return from a deep space or lunar mis-

sion has an enormous amount of kinetic energy.

Subsection B-4 demonstrated that during the dis-

sipation of this energy by aerodynamic drag for

lifting re-entry vehicles, a certain degree of ma-

neuverability is available after re-entry. This

section is concerned with the control of the ve-

hicle's energy to acquire a specific landing site

or recovery area without exceeding deceleration

or heating limits.

There are a number of possible techniques that

may be employed to guide the vehicle to a pre-

selected landing site; they are commonly classified

into (1) guidance using a nominal trajectory, implicit

techniques, and (2) guidance using predictive capa-

bilities, explicit techniques. A survey of guidance

and control methods is given by Wingrove (Ref. 19).

The more promising and well-known techniques are

listed in the table below, and they are qualitatively

discussed in order.

Group I Group II

(implicit) (explicit)

(1) Reference trajectory tech- _

niques

(2) Linear prediction tech- _/

niques

(3) Re-entry optimum trajectory

steering technique

(4) Repetitive prediction

steering techniques

(5) Equilibrium glide steering _/

techniques

The above classification does not imply that all

guidance techniques fall under only one or the

other group.

Before discussing these various techniques it

is desirable to understand the relationship of control

and trajectory dynamics as seen on the following

block diagram taken from Ref. 19. This diagram

represents the equations of motion in a simplified

form, illustrating the relationship of the control

forces to the trajectory variables.

ontro_

Vertical

Velocity

Drag _ ,

b q

T V
Altitude _orizontal Downrange

(or atmospheric Velocity Distance

density)

The lift force is essentially in the vertical

direction, affecting the rate of change of vertical

velocity. The integration 1/s of the vertical ve-

locity gives the variation in altitude (or, what is

more important, the variation in atmospheric den-

sity). This change in density affects the drag force

and thus affects the rate of change of horizontal

velocity. An integration of horizontal velocity

gives variation in the range along the trajectory.

To control longitudinal range, the rate at which

horizontal velocity is changing must be controlled;

thus the drag must be controlled. Drag can be

regulated principally by either changes in the con-

figuration (i.e., by trim changes or by extending

a drag brake) or by changes in atmospheric den-

sity. For example, if at any time in the trajectory

the range must be extended, the lift force is in-
creased in the vertical direction to raise the ve-

hicle into a less dense atmosphere, thus reducing

the rate of change of horizontal velocity and ex-

tending the longitudinal range.

The applicability and desirability of any guidance

system or technique is weighed by the relative ad-

vantages or disadvantages with regard to (1) the

ability to handle off-design re-entry conditions,

(2) the on-board computer requirements, (3) the
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flexibility to maintain trajectories with minimum

heating or acceleration, (4) the information the

guidance equation gives to the crew if manned.

a. Implicit guidance techniques

In Group I techniques, guidance by use of a

nominal trajectory, the trajectory state variables

(i. e. , V, h, u, R) along the nominal trajectory

are precomputed and stored on board. The

variations in the measured variables from the stored

values are used in guidance either to control the

nominal trajectory (path control) or to establish

a new trajectory to reach the destination (terminal

control).

(i) Reference trajectory technique

This type of guidance method controls re-entry

by use of stored reference trajectories. Such

systems have been studied extensively for circular
re-entries (Refs. 18, 20, 21 through 27) and super-
circular re-entries (Refs. 28 and 29). The tech-

nique is explained with the aid of the next sketch,

from Ref. 29.

Coatrolled

Sy Veloclt

,_o.n._...... J-_ 1%o-I'.-i 'h_,'m
Trajectories I Stored ReFerence L--

rrajectorie* _Landiq Site

_cation

A nominal trajectory, or one in which the vehicle
re-enters with the specified conditions, is se-

lected and stored in the control system. During

the actual flight, the observed or measured con-

ditions are compared with those of the reference

trajectory and the deviation of the observed from
the nominal conditions, or the errors, are ob-

tained. In the guidance system these error sig-

nals are amplified by constant-gain elements

K1, K2, K 3 and the sum of the weighted errors

is used to specify the L/D to be used to force the
actual vehicle conditions to conform to those of

the reference trajectory. Typically, feedbacks

found to be most effective as an outer loop con-

trol were the altitude rate h, deceleration g and

range R.

This is essentially a third-order feedback sys-
tem. Other measurements that may be used for

L/D _ Vehicle
Required I Dynamics

Range

Error

| Present/_

Prediction-- rrors

iTrajectoryInfluence [Variables ICoefficients

feedback control are shown in the following chart

taken from Wingrove (Ref. 19):

The left column of the chart shows those de-

vices which might be used to sense the various

feedback terms.

As is discussed below in Subsection b(2),

damping the trajectory is especially important for

those velocities greater than circular satellite

velocity, where the vehicle can eithcr skip back

out of the atmosphere or exceed a given decelera-
tion limit.

This type of guidance technique has the draw-

back that a large quantity of trajectory data needs
to be stored in the airborne computer.

(2) Linear prediction techniques

In addition to the more simplified guidance ap-

proach taken above, prediction of critical re-

entry quantities has been used (Refs. 29 through

34) to improve or augment the control logic of the
reference trajectory approach. The block dia-

gram of a typical linear prediction scheme shown
below is from Foudriat (Ref. 29).

The similarity between it and the reference

trajectory technique is quite evident. The stored

trajectory variables are compared with the present

flight conditions and the errors are obtained.
However, instead of using a constant weighting

function, a set of influence coefficients calculated

by the adjoint technique (Ref. 31) is used to predict
the effect of these present errors on the end

conditions. This predicted final value in range is
then used to control the L/D of the vehicle.

Thus, whereas the reference trajectory tech-

nique forces the vehicle to fly a single trajectory,

the prediction technique sclects one of many tra-

jectories which terminate at the desired destina-
tion.

This guidance law is only good for the linear

region near the nominal trajectory. To handle
conditions far removed from the nominal, over-

control is needed to assure that the landing site

V

h

Rlong
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Measuring

Devices

Inertial guid-

ance unit or

tracking sys-

:tern

Aceelerometer

L

First-Order Second-Order

Feedback Feedback

Vertical ve-

locity

Altitude

Drag accelera-

tion

Third-Order Fourth-Ord er

Feedback leeedback

Horizontal

velocity

Drag accelera-

tion rate

Integration

of drag ac-

celeration

Downrange

Second inte-

gration of

drag accelera-
tion

Temperature Atmospheric or Atmospheric or. -- --

sensor skin tempera- skin tempera-
ture rate ture

Pressure Sen- Atmospheric Atmospheric ....

sor pressure rate pressure
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remainswithinthemaneuveringcapabilityof the
re-entryvehicle. Alsoovereontrolis neede.d
becausethepredictionmaybein error becauseof
navigationalerrors, atmosphericdensityvariations,
aerod3,namictrim variationo[ re-entryvehicles,
andotheruncertainties. The overcontrol can be

achieved by multiplying the 6(L/D) determined hy

the sensitivity coefficients by a constant gain factor

K (Ks i). Thus the control equation is:

Control(L/D) = (L/D)nomina l+ K 6(L/D) (8)

It should be pointed out that the prediction of

supercircular re-entry range suffers from a prob-
lem similar to that for the reference trajectory;

that is, the control of range in the supercircular

portion will cause the vehicle to skip out of the

atmosphere. At present, no solution has been
obtained which avoids this.

(3) Re-entry optimum trajectory steering technique

Since published work is somewhat limited in this

area, only a cursory discussion is given here.

An ideal guidance scheme should determine the

trajectory which minimizes the heat input to the

body surface, constrain the flight path to one having

acceptable acceleration limits and specified landing

position and finally, provide signals to the control

system to accomolish such a re-entry trajectory.

This technique is similar in some respects to the

linear pr'ediction scheme given above except that

the gains of the control system are optimized.

A promising technique for achieving such an

optimum guidance system employs the calculus of

variations. In past years, resort to variational

techniques for providing guidance equations has been

practically impossible due to the complicated
nature of the indirect methods and their associated

split boundary conditions. Tedious iteration schemes

are an unfortunate necessity for' obtaining ex-

tremal paths by the indirect methods of variational

calculus.

l¢ecently, several breakthroughs have occurred

which show promise of applying direct methods of

variational calculus to future guidance systems.

Nearly simultaneously, Kelly (Refs. 35 and 36) and

Bryson, et al. (l{efs. 35 through 38) published

methods incorporating direct variational tech-

niques for obtaining extremal solutions with an

associated reduction in computing time. Both

methods make use of the system of equations ad-

joint to the small perturbation equations about

a nominal trajectory. This adjoint system yields

influence coefficients which, in turn, correct the

nominal trajectory in an optimum fashion. Con-

vergence of the method to the true optimum is

accomplished by "steepest descent" methods.
Other work in this area is found in Refs. 39 and

40.

These direct variational methods are actually

linearized solutions to the Mayer problem of the
indirect method of the calculus of variations. The

approximation involves replacing the nonlinear

trajectory equations of motion by a nominal trajectory

and a linear, small perturbation system of equa-

tions. The adjoint of equations of the direct method

corresponds to the Euler-Lagrange equations of
the indirect method and the influence coefficients

in the direct method correspond to the Lagrange

multipliers in the indirect method. The significant

advantage of the direct method is its ability to

determine near optimum solutions in relatively

few computer cycles.

To apply a direct variational technique to the

re-entry vehicle, an on-board computer would be

programmed to determine the lift commands which,

in turn, would be inputs to the control system.

Boundary conditions consisting of position, rate

and attitude data would be provided to the computer

by either on-board sensing devices or ground

control links. To account for errors in the sys-

tem (primarily input position and rate data), the

trajectory could be continually optimized from the

vehicle' s present position to the desired landing

site. The system would become increasingly

accurate as the landing site is approached. The

significant advantage of this technique lies in its

ability to gmide the vehicle in a manner which would

optimize some pertinent trajectory parameter such

as minimizing the heat input to the body, minimizing

flight time, etc.

All hnplicit guidance techniques have the dis-

advantage of the limited amount of information

available for pilot displays. Aw_ilable pilot in-

formation depends on the particular guidance

equations used, and implicit g-aidance techniques

give information only with respect to the nominal

trajectory at the particular time and not the future

trajectory. This problem of pilot display can

be eliminated if explicit guidance techniques are

used as discussed in the next subsection, B-5b

b. Explicit guidance techniques

Studies of guidance techniques employing

fixed trajectories about which perturbations are
made, have indicated that a suecessfultanding

from circular velocity can be accomplished if the

deviations of the actual initial conditions of entry

are close enough to the values stored in a com-

puter memory, and if a sufficient number of

perturbation variables are employed in the com-

putation. This approach is inherently limited,

however', to the variety of initial conditions and

degree of trajectory diversification capable of

being stored in the computer memory.

In Group II techniques, or explicit guidance

techniques using predictive capabilities, a number

of trajectories within the typical maneuver boundary
can be chosen. From observed or measured

trajectory variables the guidance system predicts

continuously the trajectory by which the vehicle

will reach the desired landing site without exceeding

design limits and without the use of a stored nominal

trajectory. An explicit guidance technique is desirable
inasmuch as the re-entry guidance system will

be required to handle wide variations in abort and
earth return conditions and also considerable de-

viation from established atmospheric standards.

In addition to increased flexibility, a continuous

prediction system affords an advantage in its dh:'ect

application to a display of predicted flight con-

ditions and hazardous situations to the pilot in a
manner in which maximum e,,ntroi is afforded.
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The main problem with any continuous-pre-

diction technique is the complexity of the equations

employed to mechanize the prediction. To main-

tain accuracy and speed in spite of limited input

information and restrictive amounts of computing

equipment, a satisfactory compromise must be

realized.

(1) tic'pctitive prediction steering technique

Perhaps the most feasible technique thus far

proposed is the repetitive prediction steering

technique studied by Foudriat (Ref. 29), Wingrove

and Coate (Ref. 41), and Bryant and Frank(Ref.

8).

Additional studies of this technique may be

found in I%efs. 40, 42 and 43.

This technique involves, essentially, a fast

solution of the simplified approximate equations

of motion of the vehicle during re-entry. By in-

serting a desired G/D ratio and solving these

equations for range, a comparison may be made

between the predicted range and the actual range

as determined in the guidance computer, and ap-

propriate changes can be made in vehicle angle

of attack in order to bring the predicted range in

line with that desired. If this operation can be

accomplished with sufficient speed, genuine

closed-loop range control is possible. Studies

conducted thus far' indicate that such a system is

feasible.

The complete equations of motion for a vehicle

entering the earth' s atmosphere are by nature

complex and difficult to solve even with large high-

speed digital computers. The feasibility of in-

flight solution of these complete equations for the

purpose of controlling range, deceleration and

heat absorption becomes questionable because of

the restrictions placed upon the size and complexity

of airborne computers. It is, therefore, both

mandatory and desirable to simplify the mathemat-

ical and computational requirements of the re-

entry guidance and control technique.

For example, this simplification can be ac-

complished by Chapman' s method which has

reduced the equations of motion to a single,

ordinary, nonlinear differential equation of second

order by rejecting terms which contribute only

negligibly to the solution and by the introduction

of a transformation of variables (see Subsection

B-I), and the method has been deve]oped further

by Bryant and Frank (Fief. 8).

Assumptions. The assumptions made in the

development of the Chapman equation restrict its

application to a partitular range of altitudes and

initial conditions which are, however, within the

range of extremes predicted for hmar missions.

The basic assumptions used in the development

of the simplified equation of motion are repeated

below:

(1) Atmosphere and planet are spherically

symmetric.

(2) Variations in atmospheric temperature

and molecular weight with altitude are

negligible compared to any variation in

dens ity.

(3) Rotational rate of the earth and its

atmosphere are negligible compared
to the velocity of the vehicle.

(4) The small change in distance from the

center of the earth is negligible compared

to the fractional change in velocity in a

given increment of time.

(5) The flight path angle _ is sufficiently

small so that the component of drag is

large compared to the component of

lift in the horizontal direction.

Predictions of longitudinal and lateral range

for flight within the atmosphere are obtained by

the following equations (l_ef. 8), respectively.

u-f

R$ ; cos y cos AA
Rlong _ _ Z dry (9)

R@ _ cos _ sin AA

J d-_ (10)=

Rlat , _[-_-_ Z
Q-

where the symbols have been defined in Subsection

B-l, and where ZXA is the change in azimuth from

the initial re-entry trajectory plane

uf F

I(;[ sin _I'cf_

, +&A = d

_-. (11)
1

+ Costa zc°s_'_ tan (Rlat/_) .] dE

where _ is the longitudinal re-entry range (fromc

the point of re-entry to the landing site).

Equation(10) was first used in Ref. 17 and its

solution determines the range traveled over the
earth's surface, measured normaI to the initial

re-entry trajectory plane. The load factor or

deceleration in units of go along the flight trajectory
may be found from:

LF - _uZ tl + Lcos _ (_ - tan _)2 (go) (12)

and the total time to re-enter in seconds is given by:

-_f

tR=27

(i.
1

-cos _ d_ (sec) (13)

Finally, the total heat absorbed by the re-entry

vehicle in kg-cal, measured at the stagnation point

on a hemispherical heat shield, is determined by

the following equation, as derived by Chapman
( Ref'. 5):
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QH(convective)

fff
r (_)3/2

j -z_-7_-
U.

1

whe re

dii (kg-cal)

i"%¸,I =

1/2

mass of the re-entry vehicle.

aerodynamic heating reference area.

radius of curvature of the heat shield.

reference area for drag and lift.

AII =

t-tC =

A =

This completes the list of equations necessary

for that portion of the predicted trajectories that
remain within the atmosphere. These equations

are applicable only to atmospheric flight, because

of limitations imposed by the assumption that

I dr/r I < < I du/ul which can be shown to be

equivalent to restricting the minimum value of Z in

Eqs (3) and (4). This minimum value of Z is ap-

proximately 0. 001, which corresponds to an al-
titude of from 91. 44 km to 88. 4 for" velocities

between ll km/sec and 7.8 kin/see; in combina-

tion with a positive flight path angle, it (:an be
used to define (the initial conditions for) a skip.

If, at any' time (luring the ew_luation of Eq (4),

the magnitude of Z decreases below 0.001, that

part of the prediction is terminated. The pre-

diction is completed by matching a Keplerian

ellipse to the atmospheric exit conditions (_e, Ve)

calculated at Z = Zmi n, which arc simultaneously

initial conditions for the skip portion of the

trajectory.

The following Keplerian orbit equations are
then used to compute the ballistic or skip portion

of the trajectory:

Central angle

2)]_e = tan- 1 an _'e (14)
1

Longitudinal range during ballistic flight (Rlong) b

(t_long)b = 2 R@ [_r- _t (15)

where _e is measured in radians in l';q (15)

Ballistic flight lateral range (Rlat) b

(Ftlat) b tgq_ in -1 in i sin (A + /?e (16)

where

-1
i = COS

eos AA b cos (Rlat)b/}{@_
(17)

and

-1
A = sin

cos (Rlat) b / I{®) / s in i1
(18)

where AA b is the change in uzimuth during

ballistic flight.

The apogee radius rma x is determined for

each skip trajectory by the follo_ing Keplerian

orbit expression:

f

r = R@f

FII IX X

1 -

- 2
U

e

1 u 2 2
e cos "_e_

/2

19)

The solution of Eqs (14) through (l!)), there-

fore, provides the predicted values of longitudinal

and lateral range for the skip or ballistic portion

of the trajectory.

These vaIues for ballistic flight are added to

the range traveled up to the final conditions fox'

the ballistic portion(Z =Zmi n) to obtain a pre-

dicted range from the vehicle's present position

to the point of second entry following the skip.

Since the second re-entry occurs with a velocity

less than circular--and at flight path L_ngle> on the

order of -3 ° to -5°--it is relatiwtly simple to
determine the vehicle' s m:meuvering potential.

General statements concerning vehicle performance

in this part of the trajectory can be made with
some confidence. For this reason, constant

values of longitudinal and lateral range are added

to the skip range to ,recount for the second re-

entry. These constant wtlues can be determined

so that they are approximately centrally located

in the vehicle' s maneuver envelop(>.

The total values of predicted lonFitudinal and

lateral range are obtained by adding ranges fox"

the atmospheric, the ballistic (if any), and the

fixed second re-entry portions of the trajectory.
The reader is referred to lgef. 8 fox" details on

guidance computer mechanization,

This approach, in addition to providing a
maximum aiIowable margin of error for the skip

maneuver, greatly reduces the numerical integration

load on the computer, inasmuch as integration

need be provided only for a comparatively small

portion of the trajectory when th(" point of atmo-

spheric exit during the first ve-_.ntr 3 is being px'u-
dieted. The saving in time can be well spent in

providing either more predictions per second or

in decreasing the integration step size thereby

increasing prediction accuracy.

The use of Chapman' s equation makes the

control of skip trajectories feasible, even in light
of the extreme sensitivities involved in control of

ballistic flight exit (or second re-entry) conditions.
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Longitudinalrangecontrolcanbeachievedfor
all entriesin theprescribedlunar-returnguidance
corridor, exceptalongtheabsoluteovershoot
boundary,wherelongitudinalrangeis limitedto
9300kmor less. In addition,accuratecontrolof
l_tcral rangeis possiblewitha fixed-angle-of-
attackvehiclebycontrollingthedirectionofthe
roll anglecommandedfor longitudinalrangecon-
tt'ol.

No knowledge of the vehicle' s altitude or of the

atmospheric properties is needed for accurate

range control. The system has been found to

operate successfully, even when comparatively

large w_riations in atmospheric density and ve-

hicle lifting characteristics are imposed.

The operation of such a guidance system starts

with a prediction of the longitudinal range and

lateral range that would be obtained ir the present

vehicle L/D and bank angle g were held constant.

The location of the predicted landing site is com-

pared with that of the desired landing site and a

second prediction is made for a larger or smaller
value of < or L/D. The bank angle and attitude

commands are transmitted to the autopilot and

maintained until the next prediction is made at

which time the entire procedure is repeated.

(2) Equilibrium glide steering technique

When considering explicit guidance techniques

for re-entry, one of the more obvious selections

is based on the concept of equilibrium glide. This

technique has several features which recommend

its investigation:

(i) The relationship between range and

velocity is simple.

(2) It has been studied extensively for sub-

circular re-entries.

(3) The range-velocity relationship suggests

that it may be applicable to super-
circular velocities.

The application of the basic equilibrium glide

equation to supercircular speeds has also been

studied (Hcf. 44). Although it can be shown that

the same equation is applicable at this speed, one
must use it to steer the vehicle to a target which

is associated with a velocity slightly greater than

= i. Unfortunately small perturbations away

from the equilibrium glide conditions at super-

circular velocity are divergent in nature rather

than convergent, as in the subcircular case.

This is readily seen from the equation of frequency

for a perturbed trajectory 2 = _r (i - _2)

_n (D/W)-ff "

From the term (1 - u2), the trajectory oscillations

possess static stability below circular velocity
(_ < 1) and are statically unstable for K > 1.

Stability augmentation techniques must be added

to prevent this divergence. Some method of
transition, such as constant altitude, from super-

circuIar to subcircular equilibrium glide must

also be provided.

The use of the equilibrium glide technique for

re-entries appears feasible, but longitudinal range

reduction (in comparison with those techniques

which provide a skip capability) and increased
total convective heat transfer are characteristics

of this approach.

If the application of the equilibrium glide

principle to the re-entry guidance of a lunar vehicle

is considered, then several guidance laws are re-

quired, each one being applicable to a segment of

the total re-entry trajectory. That portion of the

trajectory when the vehicle decelerates from ap-

proximately 99.5% of circular orbital velocity to

approximately Mach 5 is considered first, then

the application of the equilibrium glide principle to

the supercircular portion, and finally the control

of the skip (if any) is considered.

Subcircular equilibrium glide. A quantitative
understanding of the equilibrium glide may be

gained by considering a dynamic system of the
re-entry vehicle alone with the vehicle flying in

such a way that the lift and the fictitious centrifugal

force just balance the gravitational force. Drag

is constantly reducing velocity and since both lift

and centrifugal acceleration are proportional to

velocity squared, they tend to decrease. Lift is

also proportional to density, so that the balance
can still be maintained with constant L/D if the
vehicle descends into denser air as it slows down.

This type of flight will be called an equilibrium

glide. An equilibrium glide trajectory has the

following general characteristics:

(1') Altitude is always decreasing.

(2) Flight path angle is small.

(3) The rate of descent is always increasing

at a rate which is small compared to
lift/mass.

(4) Lift and drag coefficients are constant.

(5) Velocity is always decreasing.

The equilibrium glide has a number of properties

which make it especially attractive as a tool in

re-entry guidance, namely

(1) Altitude is a function only of velocity
and lift coefficient.

(2) Since the heating rate is assumed to

depend only upon velocity and atmospheric

density, it too is a function only of velocity
and lift coefficient.

(3) The distance traveled between any two

velocity states depends only upon the

velocities and the lift/drag ratio.

(4) Explicit and simple expressions for the

above relationships can be derived.

(5) All constant L/D trajectories (sub-

circular velocity) approach equilibrium

glide as time progresses because of

natural damping of vertical oscillations.

This permits the application of the

equilibrium glide expression to the latter

portion of any constant L/D trajectory.
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If equilibriumglideconditionsexist, i.e., the
lift pluscentrifugalforcebalancesthegravitational
force, theatmosphericdensitywilt bea function
onlyofvelocityfor anygivenlift coefficient.Knowing
therelationshipbetweenatmosphericdensityand
altitude,wecanplota familyof altitudeversus
normalizedvelocity(_)curvesfor variouslift
coefficients.A familyof suchcurvesis illustrated
in thefollowingsketch.

I

w/Act I -w/Act

1.0 _ = 1.414

Suppose that, at a given velocity and lift eoef--
ficient, the vehicle is above the altitude shown in the

sketch. Then, its lift will be less than if it were

on the equilibrium curve because the density will be
lower. However', the vehicle cannot remain at

this altitude because gravity will reduce the

altitude. Moreover, drag will be lower at the

higher altitude so that velocity will drop more

slowly, tIence, the Mope of the altitude versus ve-

locity curve will change in such a way as to bring

the vehicle toward the equilibrium curve. This

effect may be viewed as a feedback action tending

to keep the vehicle on an equilibrium glide. This

reasoning leads to the hypothesis that the equilibrium

glide is a physically realistic as well as mathe-

matically convenient type of trajectory.

Supercircular equilibrium {_lide. The equilibrium

glide concept has been developed from tile study

of re-entry vehicle behavior at velocities less

than circular orbit velocity. Tire possibility of

extending this concept into the supercircuiar

velocity region now suggests itself. In tbis re-
gion the centrifugal force exceeds the gravita-

tional force and negative lift is needed to balance

the vertical forces. Negative lift can be obtained

either by flying a lifting body upside down or triln-

ruing at negative angles of attack.

As the vehicle decelerates from parabolic

velocity to circular orbital velocity on such an
equilibrium glide, the centrifugal acceleration drops

from 2g to lg while the lift acceleration changes

from -lg to zero. Thus, to maintain the balance

of forces, lift will always be numerically less
than the centrifugal force. Because of this, and

because both lift and centcifugal acceleration are
proportional to velocity squared, altitude must in-

crease as the vehicle decelerates. In this t'espect,

the supercircular equilibrium glide differs from

the subcircular case. As a consequence of this

difference, maximum heating rate occurs at

maximum velocity in the supercircular glide.

One of the most desirable properties of the sub-

circular equiiibrium glide (the tendency of any con-

stant L/D trajectory to approach equilibrium con-

ditions) is absent in the supercircular region. In

fact the tendency is just the opposite. This be-

havior is ilIustrated by supposing that, at a given
velocity and lift coefficient, the vehicle is abow_

the altitude shown in sketch. Then its lift will be

numerically less than it would be if it were on the

equilibrium curve because the density will be lower.
The lift, which is negative, is then insufficient to

balance the centrifugai acceleration and the vehicle

rises even farther from the equilibrium curve.

Thus, although the forces are in equilibrium when

the vehicle is on the curve, any disturbance in the

equilibrium causes the vehicle to rise or fall at

an ever-increasing rate. In this sense, flight at

constant negative iift coefficient is inherently un-

stable in altitude. The significance of these cares

of divergence is that the control system must be

faster than these rates if damping of the divergence

is to be obtained. In other words, the guidance

system must incorporate stability augmentation at

supercircular velocities. In this velocity region

the guidance system functions in such a way as to

biting the vehicle over a specified point on earth

at a specified_ (which would be approximately

1.0005). The guidance system calculales the

L/D command needed to do this, which together
with the actual rate of climb and actual lift and

drag accelerations, is incorporated into an error
function which changes angle of attack in such a

way as to bring the vehicle onto an equilibrium
glide at the command L/D.

The equilibrium glide concept is not applicable

at circular speed. Between u : 1.05 and _ : 0. 995

a different type of trajectory, possibly constant
altitude, is desirable.

Skip range control. The range covered after
re-entry can be substantially increased by skipping

out of the atmosphere and re-entet'ing a second
time. The behavior of the vehicle outside the at-

mosphere can be described by the relatively simple

and closed form equations of a Kcplerian orbit.

Thus, if the desired point of rc-cntry is specified,

the desired path angle at exit can be calculated

from the vehicle's w_locity and position at exit.

The atmosphere does not end abruptly, so the

exact instant of exit is undefined. This difficulty

is overcome by continuously maintaining the flight

path angle at a value such that, if the atmosphe_'e
should disappcar at that instant, the vehicle

would follow the Keplcrian orbit to the ce-ent['y

point. The required path angle changes with time,

and aerodynamic forces arc required to bring
about the change. As the vehicle, zains altitude,

the available aerodynamic force diminishes. It

should be clear that the accuracy of such a system

need only be within the mammvering capability
of the vehicle from the initial conditiorks of the

second re-entry. This is true since it is proposed
that equilibrium glide control be used to control

range during the second entry.

In the actual use of such a system, the range

to the target, based on expected re-cnh'y conditions,

would be used to select the skip mode or supel _
circular equilibrium _ide mode of cont_'ol pt'ior to

re-entry. If' the skip mode is selected, a sub-
sequent switch to equilibrium glide must be made
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prior tothesecondre-entry.

In additionit appearsthatthis particulartech-
niqueis easilyadaptedto aclosedform predictive
system. Insteadofintegrationoftheequationsof
motion,theclosed-formsystememploysanap-
proximateexplicitsolutionin whichall or partof
thepossibletrajectoriesareconsidered.

Themajordrawbackofthediscussedexplicit
guidancetechniquesis thefactthattheequationsof
motionandtheequationsfor controllingthere-entry
trajectorymustbesimplifiedconsiderablyin
orderto permitclosed-formsolutions.Great care
mustbetakeninnotsimplifyingtheequationstoo
muchfor toolargeaportionofthetotal re-entry
trajectory, sothatnotenoughmaneuverabilityre-
mainsto acquirethelandingsitewiththeremaining
maneuverabilityofthevehicleduringthefinal
portionof thetrajectory. Themaneuverability
envelopeor footprint,decreasesdrasticallywith
altitudeandvelocityasthere-entryprogresses
andthekineticenergyofthevehiclehasbeenpro-
gressivelydiminished,andthereis a constantdan-
gerof missing the desired landing site.

C. RE-ENTRY BY ROCKET DECELEP_TION

OR A COMBINATION OF ATMOSPHERIC
AND ROCKET DECELERATION

Atmospheric deceleration requires that a large

portion of the kinetic energy of the vehicle be con-
verted to heat. An alternative method that can be

used is to reduce the kinetic energy of the space

vehicle to that of a circular earth orbit by appli-
cation of rocket thrust or a combination of atmo-

spheric deceleration and rocket thrust. This latter

method has the major disadvantage of requiring ad-

ditional fuel, tankage or even extra rocket engines

for the deceleration. However, its advantages in-

clude that actual earth re-entry can be performed

from satellite speeds and is consequently simpler,

and the lateral and longitudinal maneuverability

of the vehicle can be limited if the provisions

(attitude control fuel, life support equipment, etc. )

allow the space vehicle to remain in earth orbit

until the landing site rotates with the earth into a

favorable position relative to the vehicle.

Perhaps the simplest rocket deceleration tech-

nique consists of a direct reduction of the speed

of approach of the transearth trajectory to circu-

lar satellite speed. An estimate of the fuel re-

quirements for this maneuver can be obtained by

assuming the approach speed of the vehicle as

parabolic and that the required velocity reduction

AV occurs impulsively. The difference between

the parabolic and circular speeds at *he radius

r then gives the necessary velocity reduction:

AV = Vp - Vc = 2r_-I%__ 0.414_ (20)

Figure 12 gives AV as a function of mass ratio

Mf

= _ where Mf is the required fuel mass, M 0

is the initial mass of the vehicle, for various

orbital altitudes h 0 = r 0 - R®, where R®is the

radius of the equivalent spherical earth. The

mass ratios _ were computed from the rocket

equation

A V = g01sp _n(l __ ) (21)

for fuel specific impulses I = 300 sec and I
sp sp

= 400 sec. The figure shows that the fuel expend-

iture for a pure rocket deceleration maneuver is

very high and not too practical for the early lunar

vehicles. Thus, a 22,000-newton re-entry vehicle

requires approximately 11, 500 newtons fuel for cir-

cularizing maneuvers with I = 400 see and about
sp

12,600 newtons fuel with [ = 300 see.
sp

More fuel economy can be achieved if a com-

bination of atmospheric and rocket deceleration

is used to achieve the parking orbit as suggested
by Sommer and Short (Ref. 9). In this combination

technique, the atmosphere is re-entered briefly to
take advantage of atmospheric deceleration. How-

ever, the vehicle is subsequently guided out of the

atmosphere. (See sketch below.)

F_imit of Atmosphere

__.Reentry _ _ Atmospheric

_"_ _ Exit

_'_ _ _-'-._Co_st

\

_bit

After exit with velocity, Ve, the vehicle coasts to

the apogee of the Keplerian orbit, which is con-

trolled by the exit velocity, where an accelerating
velocity impulse _ V is applied. This maneuver

ensures that re-entry does not take place on the

descending arm of the coast trajectory, but that

the vehicle continues in the circular parking orbit

until the landing site is in a favorable position with

respect to the satellite.

To allow a direct comparison of the two rocket

deceleration techniques, Fig. 13 gives the mass
ratio _ for circularizing the Keplerian coast tra-

jectory for atmospheric exit velocities ranging
from 7300 m/see to 7900 m/see for three parking

orbit altitudes h 0 = 740, 555. and 370 km and for

two values of specific impulse, I = 400 see and
sp

300 see. The results of the calculations shown in

the figure indicate that if the vehicle is guided to
exit velocities equal to or a little greater than

circular satellite velocities, the fuel weight penalty
is kept within practical bounds. For example, for

a 22,000-newton re-entry vehicle, approximately

1500 newtons of fuel are required for the circular-

izing maneuver at h 0 = 740 km.

Both the technique of pure rocket deceleration

and that of combined rocket and atmospheric de-

celeration require an additional impulse to deorbit
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fromtheparkingorbit. This impulsevarieswith
theparkingorbitaltitudeandtheallowabledis-
persionsfromthenominalre-entrytrajectory
dueto dispersionsin atmosphericdensityandthe
variationsin aerodynamicperformanceofthere-
entryvehicle. Typically,for deorbitaltitudes
below300kin, ahighdeorbitpulsewith /x Vd _<

500 m/sec will bring the vehicle in steeply and

quickly with little dispersions and less maneuver-

ing capability but higher deceleration, while a low

deorbit pulse with 2XV d :_ i00 m/see results in a

long glide with long re-entry times, large disper-
sions and higher heating. Any reduction in velocity

below AV d __ i00 m/sec results in dispersions

which may be a very significant portion of the

total re-entry vehicle maneuvering capability,
For deorbit altitudes above 300 kin, the corre-

sponding values of deorbit A V d are probably

slightly larger" and the re-entry range is somewhat

longer" for the same limiting values of _{R' the flight

path angle at re-entry, which define the re-entry
corridor.

The re-entry from the parking orbit altitude
which occurs from satellite orbital velocities has

been discussed fully, both from a theoretical and

numerical standpoint, in Chapter IX of Ref. 1.

An important problem in maneuverable re-

entry vehicle performance is the ability to recall

the vehicle to a specified landing site after the
vehicle has been decelerated to the circular orbit

velocity. Both the orbital phase and the descent

phase contribute to the determination of call-

down frequency tables which may be regarded as

a measure of vehicle performance. Such tables

are useful for answering typical parking orbit de-

sign questions such as:

(1) What orbital characteristics are needed

to have call-down on a certain revolu-

tion for a given landing site and maneu-

vering capability ?

(2) I/ow long is the waiting time for recall

at any time during the parking orbit

phase.

(3) How much do dispersions in initial

conditions and orbital dispersions

affect the call-down frequency?

(4) What combinations of orbital, vehicle,

and landing site parameters allow

vehicle recall once a day, once every

three days, or some other time period?

The need to obtain call-down frequencies quickly,

preferably by use of a digital computer, is obvious.

Orbital trajectory calculations can be found in

Chapters III and IV of Ref. 1, while the re-entry
has been discussed to some extent in the present

chapter and specifically for re-entry from satellite
orbital speeds in Chapter IX of Ref. 1. However,

as indicated above, the design of parking orbit

parameters for earth return requires the combina-

tion of the orbital and descent phases. This can

be accomplished in two ways:

(i) Integrate the equations of motion

numerically as was done by Rosamond

(Ref. 45) for instance, who considers

the touchdown accuracy of retroroeket

recovered satellites (no aerodynamic

maneuverability during re-entry) by

minimizing the effect of rocket burnout

errors, which are initial conditions in

our case, through proper selection of

the deorbit thrust application.

(2) Use the results of general perturbation

theories during the orbit phase (Refs.

46, 47 and Chapters IV and V of Ref. 1

to give but a very few), together with re-

entry results as given here in Chapter

IX of Ref. 1, and by Mandell (Ref. 48)).

This approach has been taken by Jensen,

Townsend, et ai.(Ref. 49), but these

authors restrict themselvt_s to polar

orbits or arbitrarily inclined orbits

with small lateral maneuverability.

An improved version of this method
suitable for hand calculation has been

given in Chapter IX of Ref. 1.

The intent of the present discussion is to give a

general method for obtaining call-down frequencies

from circular orbits efficiently and quickly by use

of a digital computer through introduction of the

concept of ground swath to account for lateral

maneuverability. The method is thus the most

general; it applies for any orbital altitude, inclina-

tion, arbitrarily large lateral and longitudinal

maneuverability during re-entry, as well as any
launch and landing site location. The cail-down

equations have been programmed on the IBM 7094

at the Martin Company. Basic assumptions, deri-

vations of the equations, as well as some results

are presented below.

1. Assumptions for Computing Call-Down.

a. Initial conditions

Initial conditions, which occur at the end of

the rocket burning designed to achieve the circular
parking orbit, consist of the geodetic latitude,

longitude, and direction of motion at the initial

point. Small errors in these quantities, however,

should not affect the call-down frequency signifi-

cantly since the effect of these error's on the de-

orbit position is not cumulative.

b. Orbital conditions

The satellite is represented by a mass point in
• 0o<a circular orbit with a given inclination 1VE, _

iVE < 180 ° , and mean radius r 0. The altitude h 0

of the circular orbit is defined as its mean equa-
torial altitude, i.e.,

h 0 = r 0 - R e, (22)

where r 0 is the mean geoc(,ntl'ic radius and 1%e

the equatorial radius of the earth. The major

forces acting on the satellite are due to earth

oblateness and atmospheric drag. Only secular

changes in the satellite orbit will be considered

important. Short and long periodic changes due

to oblateness and drag as well as the effect of
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othergravitationalbodies,solarradiationpres-
sure, massirreg_ularitiesin theearth,andsmall

thrust forces have been nc_h cted sincu they do

not affect tile, call-down frequency appreciably,

The main effect of atmospheric drag is to dc-

cFcasc the recall oFbitai radius and to increast the

mean motion. The Fadius on ti:u j-th Fcvolution

r. ix giwm in terms o1' quantities in the (j-t)th
J

,)

= r. - 4_ r/_ , (23)l'j. 3- 1 13efT Pj- 1 1

tvht,Fe

p dispers(!d CI)A

BelT = Fa0 p standard atmosphere ' 2 M

is the cffet:tiv(! ballistic eoc!Tieient, Va0 (h, LvF)

the atmosptlt,riu oblateness correction ['actor

(Ref. 50), C D the drat: coefficient, A the frontal

area of the satellite, M its mass, and 0 the ncutral

'atnaosphcric density computed from the 1961 U.S.

,Htt,ndard Atmosph,,rc (Rcfs. 51 and 52).

The latter p dispersed wa,_ intro-
p standard atmosph_rc

dutcud to cllablc simulation el constant dispersion:s

in atmosphel'ic (h,nsity from th_ standard, I)r:_

(h,ca) ' histories For val'ioLts ballistic coefficients
wit!l the option to int:'oduce atmospheric oblate

hess and dispersions in density can be obtained

aloItg with the call-down l'rc, qucney. The t:h::llt4c

in period on the j-th rt:volution corm,spondin_ to
tilt, dccrea._ in radius is

= 12 2 .2. 5 (24)

A'_.i _T %rr Pj-I'j- :'

Wilt,re t_ = ("Sit) is tlw gravitational con,_tant of

the earth, (1 the, uniw_rsal gravitational constant

aIld _'I_ the nlass of Uh, earth.

'Fh(, scculac tiff,its of ,,arth oblatcnc,_s arc

._ummarizcd b.y the Yct_rc'ssion l'atc of' thu nod(,,
2

d':2 / 1{(,_

dW = <,.>: 54_ J2(,Y_) t:o,_ ivl:, (_51

where <l S - [082.28 x 10 -fl i._ the' constan! as._o_'hltcd

with tilt, se_:olld ZOllal hLtwiltOllic tt_t'lllin [hc uXpall-

sion of thu earth _,_ gravitational potential, and _
correction to thc nodal pt,riod of' tilt, ._atullitc,

2 1

Am ---3# 1.5 ([_I_ \_ 7 cos iVI,:" , (26)

_ =- "0 <12\r0 I 46-
which can t)c dcrivt'd f'rom %tl'ubic (1{of. 47). The

_4(!CIRiLI/' ob[att'tlesS UClFl'{'t2tiOil£ at'if ttSSlRlllt'd inch,-

pt,ndcnt or the, s_,cular dra K t'ffcct,<, i. _'., tht,y

aFe constant ill a _ivcn parkin_ oH)it simuh:tiol:

on the t:()ITIputcF.

Small dispersions from nominal in-p/ant orbit

injection conditions can bc simulated I)y intl'o-

dueint: a rurtht,:, corrcction to th:, pt,riotl, &Td,

for k rtwolutions. Tht,sl, injection dispersions

may bc si_ni/'icant due to tlwir t:klmtilatiw_ cffect

ell the s::tellih, d,,orbit position.

c. Descent conditions

For a landing o1' the re-entry vehich: to be

pos._il)le, the orbital plane has to be "near" the

intended landing sitc and tit:' satellite must be

:n the col _ cot orbital positio : as _iv(,n by tlle

central angle from the ascendin_ nodt,. The con-
cepts tllleaull and "coru't,ct '_ will be described

qunntitatively in Sub,_ection 2.

The actual physical pictul_ dm'in¢: t':,-ontry

i_ tilt' following: Vet have a point landing site.
Tht!Ft _ iS a r'e-ontry rcKion at orbital altitude from

which the :'e entry vehich, may Feach this point,

and all possible re-untry tmtjcctoi'ics funnel

toward it. Since the earth is roughly sptwrical
and the satcllih, moves in an almost central force

field, the shape of this re cntFy region chanKes

considerably with m'bital position as well as al-
titud:,. For call-down studies, it ix much more

convcnient to use a maneuvcrinfg envelope which

is independent of orbital position and is el( fined
as th:, locus of points on earth that can be r_,ached

by :tct'odyilamic or thrust Illtill('Llvt't'illg [i'Oln tt
fixed dcorbit position which coincith,s witt: the

instantaneous satellite position. This envelope

may he l'udueed in size by constraints of total

he:_t, muximum heating" mitt,, or estimated dis-

pcr,_ions during re _mtuy. Each point inside and

oil tilt {,nv{,tope can be defined or: a nom'otating

earth by a longitudinal range in the orbit plane

I{lon_ from deorbit, and a lateral ran_':, f{la t

perpendicular to the orbit plane, with lat('l'al

l'ttl:{_t!s ill the dire(:tion of the satellite angular

vuLocity w_etor eonsid(,c:<t positive. The point
on tilt, nonrotatin g earth is related to one on a

rotating earth by the descent time t d and the anKu-

Lar velocity of the earth w_.

The assumption that tlh, maneuvurin_" envelope

i,_ independent of orbital position corresponds to

assuming that tilt,eff'ct:t of atm_spherit: rotation

clurin# rc entry ix nct:li_ibl(,. W(, define call-

dOWl: a,s thc condition when tilt, Landing sitt,, which

i._ on a rotatin_ earth, ix within the maneuw,ring

(,nv,,iopc o1' the, re-entry w,hich-. The aItitude-

dl'pt'ltdl,llt2e of' tilt' n]:lltt'klVtq'ill_" _!nvt,[ope CLJll b('

t::kcn into ;:et:ount hy introducin_ sevesu/l env:_lopes

for th:' _'xp:'ctc(t (lt,olIbit altitud:' ranges. We ::S-

SlLIn(_ Jlll't[It'l' that :,etch itu'e:tular maiit:uvcring

t'llv()iol)t'is approximated by sevcrai n:tlntTuv_,Fill_

r:'t't:tn_Ics. Two co_'net's of this rcct:ulglc art,

d('f'ilu'd by (t:long)rain' tilt, (:orrusponding (td)min,

and (llla[)m:ix a>_ we:it ::2 (l{h:t)mh f rl,spcctive[y.

Similarly, th:, othc:' two t:ormTs are _iven by

(t_lon_)m:lx, lid)re:ix , (Igl.at)max, und (t_lat)mi n.

T}li_ d,,iinitioli i_ possible sin::_, t d i_ only wu'y

w_';_kl5, :h,p_'ndc,nt on l-Ill t.

\ Frl_UlSLtl'e OI |Hil(ij.ll_ ._iitt" 'IH:!aI'I1USS ii i.'-;

(l_,[tlt)N/a X Slit1 (tT[at)lllJll which Form a ,_i'Oulld swath

;:round th:' still'flit:'_round tt'ac:k. One condition

for c:llt-down is tlmt the :2cocentric p:::'alh'i of"

h:titLid_,or tlt:,laI:ciin_ sit(,_:, irlt:u'._P::tthe _round

sw:ith (ICi_4s. 14 ::nd 15). The probhm: of" findin_

this hK:'r.4:,(',tion is oil(, el' _q)hcric:d trigonometry:

(;iviql the, _,,o_:uutri:: h:tituth, (or d(,cl_nation) of th(,

h:n(lin_ .<its, 61,, the orbit inclination iVE, and the
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lateral rangeHlat, findthecentralangle_ and
inertial longitudekof theintersection,asmeas-
ured relative to the same ascending node. The

solution of' this problem is (Ref. 53, p 42):

sin _: =

sin \ =

sin @;, - cos iVE sin l{

sin iVE cos 11

- sin iVE sin I1 _ cos iVE cos }{ sin ,3

cos e#_,

cos a _
cos ), = c'os 'e i, (27)

where t{la t is positive in the direction of the orbital

angular velocity, and

360 [{lat

R : 2 rr. 11 (oh!g) (28)
c

Three possible eases may arise:

(1) Both (l{lat)ma x and ( I{iat)mi n .yield

I sin i}l > 1. No intersection occurs and
we have either a call-down on each revo-

lution or no call-down at all. These cases

can be easily distingmished by the values

of' _b_., iVE arrd Rlat.

(2) Either (Rlat)ma x or (Rlat)mi n yield

c, [ > 1 Two intersections occurI Sill _
neat' tim apex, the northernmost or

I sin _-[ i. Two intersections occur
near the apex. the northermI_ost or

southernmost points of the ground tt'aek

(see Fig. 15). The quadrants of /_ can
be determined easily by the landing

latitude and the relative position of the

intersection with respect to the ascend-

ing node. Call the smaller value _1'

the larger value d2' and their difference

A_ = _2 - t?l (29)

The quadrants of the corresponding

values of k, k I and >'2' can be deter-

mined by use of Eqs (27), and the condi-

tion that they differ at most by one from

thc quadrant of i_. Define:

'.Sk = k 2 - k 1 with Ak>0 for ivp; <90 ° ,

A k 0 for ivE > 90 ° . (30)

(3) If both (Rlat)ma x and (t{lat)min yield

I sin S[ " 1, then there are four" inter-

sections o-f the landing parallel of lati-

tude with the ground swath. Ttmse inter-

sections may be t'educed to sets of two

intersections by specification of a

northerly or southerly approach to the

landing site. Each set may now be

treated separately with quadrant deter-
mination as in Case (2).

If (I%lat)ma x = (Rlat)mi n = 0, then the

two ground swath intersections reduce

to one ground track inte:'seetiolr which

is given by lwtting sin 1-_ = 0 and cos I%

= 1 in Eqs (27):

sin 91 ,

silt i5 = vul-----'_*Qsin

cos ivi <sin_ =

sin )` : cos <_ cos _ cos _,_,
(31)

The second factor in determining call-down,

the "cotu'cet" orbital position, is of" aloft inlpot'-
tance than the c'orueet time of duorbit, since the

longitudinal range in the orbit plane imposes con-

straints on the location of the deorbit point. The

lateral maneuw_r'ability of the re-entry vehicle of-

fers some flexibility in the choice of deorbit point

as given by _,_ = i_2 - _1 in l,'i}_s. 14 and 15, but

in most cases this is not enough to counteract re-

entry atmospheric dispersions, guidance and con-
trol system errors and timing errors in the de-

or'bit point due to (tensity dispersions in orbit.

Especially in near-polar orbits, when .5i_+0, ad-

ditional longitudinal range is necessary to ovt?r-
come these factors ancl to add somewhat to the

call-down frequency by imposing less st,yore con-
straints on tile deorbit point location. The quanti-

tative evaluation of the. correct orbital position will

be deferred until the next section.

2. Derivation of the Call-Down Conditions

There are two equations for determining call-

down, one giving the position of the orbit plane
with respect to the landing sit{. :_nd the other giving

the satellite position in orbit. In e:lch {z:lst' tilt'l't'
arc conditions that h:lvt! to bc met tel" call-down to

take place. The longitudinal rangc cnp:_bility of the

re-entry vehicle places constraints on tin, satellite

position, while the latcral r;_nge capability places
constraints on both orbit phone :,nd sat(ditto position.

In the folh)wing; tilese pquations and eonstr:_ints will

be derived ancl a method for ol)tainina civil down

frequencies from those two equations ;lad tllFc(, con

straints will be given.

Consich,r the nnguhlr displacement in lon_itudc
of the initial pellet ns tn{?_tsui'cd il'om the vcrn:d

equinox, an inertial reference direction (see },'i_.

16),

_,C to = k.)0 - kO + ki, (32)

where: t o is the initial time; k 0 ttl(, lontlitude;

and 61) the geoecnt,'ie latitude of the initial point; coO

the rotational rate of the earth hi)out its :_xis, ._@

4. 178074 x 10 -3 d_.g/see; 520 the longitude of the

ascending node at the initial time; and k 1 the

longitude of tile initial site with respect to L)0. At

landing on the m-th day, the angular displacement

in longitude is given by (see Fig. 17):

_@tf : _20 - )`f + 3601n + k 1 + -% k M + n'.'2,

(33)

where the subscuipt f refers to the landing site,
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m is the integral number of sidereal days (I side-

real day , 86164.1 see), n the number of orbital

revolutions from injection to deorbit, and A kM

the difference in longitude between k I and the

landing site. It can bc seen from Eq (30) and

Fig. 17 that one condition for call-down is

0Z/XXMZ ,x X. (34)

Equations (32) and (33) can be combined to yield

_@ (tf-t 0) =k 0-kf-ki+360m4n_+k l+Ak M.

(35)

The time from the initial point to landing is:

n

tf-t 0 =nT0+ Z

j=0
(n-j+l)Arj+kA-d+t d, (36)

where r0 is the initial orbital period including

oblateness effects and the second term gives the

atmospheric drag effects on the period. Now we

can solve Eqs (35) and (36) implicitly for n by

elimination of (tf- t O) between them to obtain:

k 0-kf-k i+360m+kl +AkM
n = .......

@( -_71c_ 7 0

t d + k /"r d

h)
(_0

(37)

11

(n-j+ 1) A:.
J

_ 37=0 ...... .

(r° _ 3L )

Another expression can be obtained for n by

considering the total central angle from injection
to deorbit:

n = 360 + p 436]} + 360 - 2_H '
e

(38)

where _i is the central angle of the initial point,

p is the number of revolutions from the ascending

node of Oi to the one of _1' and A_M is the dif-

ference in central angle between ffl and the land-

ing point. Equation (8) and Fig. 4 suggest the
seeond call-down condition:

0 < Affrv I < Aft, (39)

with a third condition for call-down imposed by

the longitudinal maneuverability'

(Rlong)mi n < Rlong < (Rlong)ma x. (40)

The problem of obtaining call-down frequencies

for an orbiting vehicle reduces to solving for the

values of n from Eqs (37) and (38) for each value

of m, up to the maximum number of days in or-

bit, q, and subject to the constraints given by
Eqs (34), (39) and (40).

However, there are several difficulties. The

quantities /',.kM, A_Mand Rlong .in Eqs (37) and

(38) are unknown, as wei1 as the values of n and

p for each value of m. In addition, Eq (37) can

be solved for n only by an approximation proce-

dure since n occurs in the summation on the right-
hand side as well as on the left-hand side.

We propose to determine the lateral maneuver-

ing effectiveness first by considering two cases:

(1) Entry into the ground swath with Ak M =0,

Aft M = 0 in Eqs (37) and (38).

(2) Exit from the ground swath with &k M =

/',k, /',I3 M = &_ in the same equations.

The approximation procedure to obtain n consists

t d + k A rd
of transferring the term -

o_)
(_0 - _®

from

Eq (37) to Eq (38), and computing

k 0 - kf - k i + 360m + k 1
(n0) 1 = ___

+_R_a)
_O (r 0 _

(41)

in Case 1 as well as

Ak
(n0) 2 = (n0) 1 + (42)

_ (_'o - _ )

in Case 2 for each value of m. Here (n0) 1 and

(n0) 2 are the number of revolutions from the

time the initial point passes through the ground

track to the entry and exit of the landing point

from the ground swath, respectively. The effects

of drag have been neglected in Eqs (41) and (42).

However, the values of (n0) 1 and (n0) 2 obtained

from Eqs (42) and (43) for a given m permit us to

calculate drag effects by replacing n by (n0) 1 and
(n0) 2 in the drag term of Eq (37),

n

Z (n- j+l)Ar
J

An D = _ j=0 - A)_) (43)

(r0 c_9

Now we can compute for each day in orbit
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(no+AnD)] =

and

(nO

k0 - ke- k. +360m+ k. 1 1

(n0) 1

_ j=0
J

kO - kf - ki + 360m + k.t +,GK

+&nD) 2 ..... _ )

(n0) 2

_ I(n0)2- J + I; ATj

_ j=o

(44)

(45)

Denote the integral part of (n0 + AnD) 1 at a given

m by Ira1 and the integral part of (n 0 + AnD) 2 fo_

the same value of m by Ira2.

Next we determine the in-plane maneuvering

effectiveness by collecting the remaining terms

in the other equation. Consider entry of the

landing site into the ground swath with minimum

longitudinal maneuverability,

_i + _I (td)min + k&7 d

(no +AnD)I min =P + 360 + - f2 )

(%)- _'_
(46)

(Rlong)min,
2- H

e

and its entry into the ground swath with maximum

longitudinal maneuverability,

_i + _1 (td)max + k_" 7d

(no +&nD)l max = p + 360 + _ P.

('_0 _,9 )

_ (Fllong)max (47)

2TrlR
e

Similarly, there arc two expressions for the exit

of the landing site from the ground swath which

can be obtained by adding the term 360 to Eqs

(46) and (47), respectively. Take the smallest

and largest value of the four values of (n O +An D )
just computed and form a range

smallest I(n0 +AND) - _I ,

largest i(n0 +AND)_ p_ (48)

The additional assumption has been made here

that atmospheric drag acts from the initial point

to touchdown, i.e. , during n O revolutions, rather

than from injection to deorbit, or during n revolu-

tions. In most practical cases Hlong is less than

one revolution and this assumption will not affect

the call-down frequency appreciably. Further-

more, the drag effects on the dispersed elliptic

orbit with period "rj + ATcl should be essentially

the same as those on the nominal circular orbit

with period T..
J

The final step consists of combining lateral
and in-plane maneuverability to test for call-down

at a given m. Let p in Eq (48) vary between

(Iml - 3) '- p < (Im2 + 3) (49)

and add each of these values of p to Eq (48) to

form the seven ranges

smallest (n 0 + AND),

largest (n o + An D )

(50)

for each p in Eq (49).

Whenever Eq (5(1) and dlc range fol'mcd by

(n O + AnD) 1 and (n O +,SnD) 2 for the same m

overlap, there exists a call-down on the day m.

Denote each call-down day by m = m . For each
value of m = m obtain c

C

(td)ma x + kA 7(t

nmi n = (n O +AND) 1 from Eq (44)- -- (.)

(70 - _; )

(51)

(td)mi n ! k_X z d

nma x =(n0+AnD) 2 from Eq (45)-

(52)

where n is the number of revolutions from the

time the injection point intersects Ihe ground track
to the time the deorbit point intersects the ground

swath, and accounts essentially for laIeral

maneuverability. However, the controlling factor

of satellite call-down is the in-plane maneuverability

from deorbit to landing which places a constraint

_1 _ g(Ilion)max

360 2 _ R '
e

_1 +A_ _ (Rl_)min
360 2 Tr R

e

(53)

on the satellite position at deorbit during any
revolution. The call-down revolutions can be ob-

tained by (1) converting the revolutions from n,
which is measured from injection starting at 0,

to N, the number of revolutions from the first as-
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eending node, where N = 1.0 and (2) by noting tor

which integral number of revolutions the fractional

range (Eq (53)) overlaps the range formed by Nmi n

and N (Eqs (51) and (52) with n converted lo
1TlaX

N). There may be more than one call-down revolu-

tion per day if (Nma x - Nm[ n) 1, which occurs

for large lateral maneuverability and for small

lateral maneuverability it' the landing site is near
ihe northerilmost or southertm?ost p(hnts of the

ground track. The reselling call-down table for

each m = m consists of N, the altitude, and the
c

time in orbit for both n and n
l'13 in nitre"

This discussion of call-down frequency ends

the qualitative arm quantitative description of re-

entry which uses at leasl some rocket decelera-

tion during the earth relurn trajectory phase°

This re-entry technique reduces the demands on

the heat shield materials, the guidance accuracy

and the aerodynamic performance of the re-entry

vehicle itself. On the other hand, a major draw-

back of tilts return technique lies in the expenditure
of additional fuel and a lesser drawback hi the

longer time required for completion of the mission.

D. R EF ER ENCIqS

1. Anon., "Orbital Flight Handbook, " ER 12684,

Martin Company, Space Systems Division

(Baltimore) 1963.

2. Scifert, ttoward S., ed., "Space Technology,"

John Wiley and Sons, New York, 1959.

Chapter XII, "Recovery Dynamics--Heat

Transfer at Hf'personie,. Speeds in a Planetary
Atmosphere, f_. Lees.

3. Chapman, Dean H. , "An Approximate

Analytical Method for Studying Entry into

Planetary Atmospheres," NASA TR R-11,

1959 (supersedes NACA TN 4276).

4. l,uidens, Hoper W°, "]'light-I)ath Charac-

teristics for l)euelerating from Supereircular

Speed," N.\SA TN 1)-1(}91, 1961o

5. Chapnmn, l)ean H. , ",\n Analysis of the

Corridor and Guidance llcquiremenls for

Supcrch'cular |.;nl ry into Planetary At-

mospheres, " N '\S'\ "['11 f{-55, 1959.

6. Granl, Frcdcrh:k (:. , "Modulated t<ntry,"

NASA TN D-4.%2, 1960.

7. [,cry, IAoncl, I,., Jr., "Atmosphere Entries

wilh Spacccrafl [Aft-l)r'ag Ratios Modulated
_o [Amit l)e<_ tcra tellS,' NA_SA TN D-1427,

1962.

8. Bryant, J. l,'° and Frank, M. P., "Super-

c[rctllaF [<[t'-t!ll_ry Guidance for a Fixed

1_/I) Vehic]c _naploying a Skip for Extreme

I{anges," AHS I'aper 248!)-62, 1962.

9. Somnler, Simon C. and Short, Barbara J.,
"Point Return from a Lunar Mission for a

Vehicle that Maneuvers Within the Earth's

,\tmosphere," NASA TN 1)-1142, 1961.

10. Gram, Frederick C., "Importance of the

Variation of Drag with Lift in Minimization

of Salellite Fntry Acceleration," NASA

TN D-120, 1959.

11. Grant, Frederick C., "Analysis of Low-

Acceleration Lifting Entry from Escape

Speed," NASA TN D-249, 1960.

12. Wong, Thomas a. and Slye, Robert E.,
"The F, ffeet of Eit't on Entry Corridor Depth

and Guidance Requirements for the Return

I.unar Flight," NASA TR t{-80, 1960.

13. Wang, H. E. and Chu, S. T., "Variable-

I,ift Re-entry at Superorbita] and Orbital
Speeds, " Aerospace Corp Report TI) I{ -930

(2570-20) TN-2, May 1962 (IAS Paper 62-

165, 1962)o

14, Gab-nan, Barry A., "Direct Re-entry at

Escape Velocity," GE-MSVD TIS R60SD357,

April 1960 (AAS Preprint 60-86, August

1960).

15. Bossevain, Alfred G., "The Effect of

Lateral and Longitudinal Range Control on

Allowable Entry Conditions for a Point He-

turn from Space," NASA TN D-1067, 1961.

16. Baradell, Donald L., "Lateral Range Con-

trol by Banking During Initial Phases of

Superctreular Re-entries," NASA TN D-

1511, 1962.

17. Slye, Robert E., 'An Analytical Method

for Studying the Lateral Motion of At-

mosphere Entry Vehicles, NASA TN D-

325, 1960.

18. Young, John W. , _'A Method for Longitudinal

and Eat,era[ Range Control for High-Drag

Eow-Ltft Vehicle Entering the Atmosphere

of a Rotating Earth," NASA TN D-954, 1961.

19. Wingrove, Rodney C., "A Survey of At-

mosphere Re-entry Guidance and Control
Methods," IAS Paper No. 63-86, 1963.

20. Reismann, H. and Pistiner, g. S., "Design

and Evaluation of a He-entry Guidance Sys-
tem," Astronautiea Acta, Vol. VI, Fasc

2-3, July 1960, pp 79 to 114.

21. General Electric Company, "Flight Control

Study of a Manned He-entry Vehicle," WADD

Technical }{eport 6(/-695, Vols. I and II,

guiy 1960.

22. Ch(,atham. I). C., Young. J. W. and E}4gleston.
a. M., "The Variation and Control of Range

Traveled in the :\tmosphcre by a Itigh-Drag

Variable-lAft l;,_tt';< Vehicle, " NASA TN D-230,

19 (; 0.

23. Teague, Roger, "Flight Mechanics of lie-

entry A her Vltght b>[ Means of Various
• ) • ,Liftisig Teehnt(lues, NASA MNN-M-At!]RO-

4-60, 1!)60.

24. .qhahuln, t#,. 1,. , "He-entry Guidmicc for

Mat]ned Spacecrafl," paper presented at

X '_4



25.

26.

27.

28.

AtlS-IRE, 15th Annual Technical Conference,
Cincinnati, Ohio, April 1961.

Friedenthal, M. J., Love, J. A. and

Neustadt, L. W., "Feasibility Study of an

Acceleration Monitoring Guidance System

for Lifting Re-entry Vehicles," STL Report

!1572-0006-MU-000, October 1961.

Edge, C. F. and Heehtnmn, E. P., "Con-

trot Lgop Simulation for Energy Manage-
ment, Proc Aerospace Forum II Session,

IAS Meeting, New York, 22 to 24 January
1962.

Wingrove, Rodney C. and Coate, Hol)ert

E., "Ifift-Control During Atm(_sphere Entry

from Supercireular Velocity," Proc IAS

National MceIing on Manned Space Flight,

St. Louis, Missouri, 30 April to 2 May
1962.

Wingrove, Rodney C°, "A Study of Guid-

ance to Reference Trajectories for !lihing
Re-entry at Supercircular Velocity, NASA
TR-151, 1963.

29. Foudriat, Edwin C., "Guidance and Control

During Direct-Descent Parabolic He-
entry," NASA TN D-979, 1961.

30. Webber, A. L., "Investigation of the In-
,r

strumcntation of an Atmospheric Re-entry,

Report T-218. MIT Instrumentation Labora-

tory, Septemt)er 1959.

31. Foudriat, Edwin C., "Study of the Use of

a Terminal Controller Technique for He-
entry Guidance of a Capsule-Type Vehicle,"

NASA TN D-828, 1.(161.

32.

33.

34.

35.

36.

37.

Rosenbaum, Richard, Longitudinal Range

Control for a Lifting Vehicle Entering a
Planetary Atmosphere, " ARS Preprint 1911-

61, August 1961.

}3tyson, Arthur E. , and Denham, Walter F.,

A Guidance Scheme for Suj)erctrcular Re-
entry of a IAfttng Vehicle, ARS I reprint
2299-61 tARS aouHacd, Vet. :12, June 1962.

pp 894-8).

North, Raymond, and Spryer, Jason, "Con-

trol System fur Supercireular Entry Maneu-_r
vcrs, IAS Paper 62-3, January 1962.

Kelly', H. .J. , Kapp, R. E. , and Meyer, H. ,

"Successive Appr'(,ximath)!i Teclmiques for
Trajectory Optimization, IAS Synll)osiunn

on Vehicle System Optimization, November

28 to 29, 196lo

Kelly, H. J., Gradient Theory of Optimal

Flight Paths, AHS Journal Vol. 30, pp 94]

to 953, October 1960.

Brys(m, A. E., Dcnham, W. V.. Carroll,

F. J., and Mikam[, Kinya, "l)ctcrmirlation

of 1rift or Drag t)r_r'ams _o Minimize Re-

entry ttcating, " Journal oi7 th,., Acre/Space

Soienc+._s. Vol. 29, No. 4, April 19(12.

38.

39.

40.

41o

Bryson, A. E., and I)enham, W° F'., "A

Steepest Ascent Mvthod of Solving Optimum

Programming t)roblems," l{aythcon Co. ,
Missile and Space I)ivision, Pvport F,I{ 1303,

August 1(,161.

Spryer, J. L. , 'Optimization and Control

Using Pt.rtnrbation Theory to Find Neighbor-

ing Optimum l_aths, '' pl'eseiltl'd ;it th,' SI\lI

Symposium on Multivvri;ll)le Linear Control

System Theory, Boston, Mass., November

1 It) 2, 1962 (to be published in series on
control of the Society for Indus(thai an(t

Applied Mathematics).

A Study of Energy Management Tee miqucs
7 " " 7 ' t, .fur a }hgh IAIt \chicle, (,e le ' 1 I Aectr>'

Company, Air Force Systems Command Tech-

nical Documentnry Report ASD TD}' 62-77,
Vols. 1 and 2, June 1!162.

Wingrove, Rodney Co, and Co:He, Robert,
E. , "Piloted Simulator Tests of a Guidance

System Which Can Continuously Predict

Landing Point of a I.ow I,/D Vehicle I)uring
Atmosphere Re-entry," NASA TN D-787,
1961.

42. Dew, Paul C., Jr., Fields, Donald Po, and

Scammell, Frank H., "Automatic Re-entry

Guidance at Escape Velocity," AHS Prcprint
1946-61, August 1961.

43. Lear, Inc. , "A Study of Selected Control-

Display Problems for Manned Aerospace
Vehicles," [,ear Engineering Heix)t't (;1{-14(15,

.\SD Technical t{cport, JVInreh 19(;2.

44. Ilildebrand, R. , "Manned Re-entry at Super-

satellite Speeds, " IAS Paper No. 60-83,
1960.

45. Rosamond, D. 1,., "Satellite l/cc_very

Techniques for Optimization of Touchdown

Accuracy," Journal of tlne Acro/Sp:_ce

Sciences, Vol. 28, No. 3, March l!161.

46. Kozai, Y. , "The Moti,m of a Close Earth

Satellite, " Astronomical Journal, Vol. 64,

No. 9, November 195!1.

47. Struble, R. A., "The Geometry of the Orbits

of Artificial Satellites," Archive for tlntional

Mechanics and Analysis, Vol. 7, No. 2,

1!161.

48. Mandcll, I). S., "Maneuvering })eFfort]lance

()f I,ifting I{e-Entry Vehicles,- ARS Journal,
Vol. 32, No. 3, March 1962.

49. Jensen, J., Townsend, G. E., Korl<, J. ,

Kraft, J. D., 'rl)esign Guide for Orbital

l.'lio_ht," McGraw-Hill, New Y()rk, 1962.

5(1. l_ee, V. A., 'Atmosphere-Oblatcnt_ss Cor-
rection Factor for Circular Satellite Orbits,"

AHS ,hmrnal, Vol. 32, No. 1, January 1[162.

51. Cole, A. h:., Court, A., Kantor, A. J.,
"._tandard Atmosphere Revision to 90 kin,"

Geophysics Heseareh Directorate, Air Force

X-25



52.

ResearchandDevelopmentCommand,Bed-
ford, Mass., 28March1961.

Champion,K. S.W., andMinzner,R. A.,
"ProposedRev_sioi,of UnitedStatesStandard
Atmosphere,90-700kin," Geophysics Re-

search Directorate, Air Force Research and

53.

Development Command, Bedford, Mass.,
11 December 1961.

Chauvenet, W. , 'rA Manual of Spherical and

Practical Astronomy," Vol. 1, Dover Publi-

cations, Inc., New York, 1960.

X-26



ILLUSTRATIONS

Figure

2

3

4

5

6

7

8

9

10

11

12

13

14

Title

Pericynthion Altitude & Reentry Range Versus Time
of Lunar Month to Land at Australia & Edwards AFB.

Operational Corridor Defined ................

Effect of Entry Velocity on Corridor Depth .......

Correlation of the Maximum Reduction in Peak De-

celeration with the Aerodynamic Resultant-Force
Coefficient .............................

Modulation Effectiveness for Lifting Vehicles .....

10-g 0 Undershoot Corridor Boundaries for an Entry

Velocity of 10.7 km/sec Lift Modulated from C L
max

to C L = 0 ..............................

Single Pass Overshoot and 10-g 0 Maximum Under-

shoot Corridor Boundaries for a Reentry Velocity
of 10.7 km/sec ..........................

Longitudinal Range Capability ................

Estimated Maximum Lateral Range for Super-

Circular Reentry ........................

Maneuvering Envelope .....................

Maneuvering Envelope .....................

Fuel Required for Rocket Deceleration from
Parabolic to Circular Velocity ...............

Fuel Required to Obtain a Circular Orbit as a Func-
tion of Exit Velocity and Specific Impulse of Fuel for
a Combination Rocket and Aerodynamic Deceleration.

Southerly Approach to a Landing (Case 3 of Descent
Conditions ) ............................

Pag__.__._e

X-29

X-30

X-31

X-32

X-33

X-34

X-35

X-36

X-37

X-38

X-39

X-40

X-41

X-42

X-27



Figure

15

16

17

ILLUSTRATIONS (continued)

Title

Approach to a Landing Near the Northern Most
Point of the Satellite Ground Track (Case 2 of

Descent Conditions .......................

Displacement in Longitude at the Initial Time .....

Displacement in Longitude at Landing ..........

Page

X-43

X-44

X-45

X-28



Fig. 1. Pericynthion Altitude _ Reentry Range Versus

Time Of Lunar Month To Land At Australia _ Edwards AFB
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Fig. 4o Correlation Of The Maximum Reduction In Peak Deceleration

With The Aerodynamic Resultant-Force Coefficient
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Fig. 5. Modulation Effectiveness For Lifting Vehicles
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T i

Tig. 7. Single Pass Overshoot and i0-_0 Maximum Undershoot Corridor

Boundaries For a Reentry Velocity of i0.7 km/sec
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Fig. 9. Estimated Maximum Lateral Range

For Super-Circular Reentry
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Fig. 12. Fuel Required F_r Rocket Deceleration
From Parabolic to Circular Velocity
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Fig. 13. Fuel Required tO Obtain a Circular Orbit as a Function
of Exit Velocity and Specific Impulse of Fuel for a
CombLnation Rocket and AerOdynimic Deceleration
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Fig. 14. Southerly Approach to a Landing
(Case 3 of Descent Conditions)
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Fig. 15. Approach to a Landing Near the

Northern Most l'oint of the Satellite

Ground Track (Case 2 of Descent Conditions)
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Fig. 16. Displacement in Longitude at the Initial Time

Ground Track

,\
I Initial Site

f (_o" A o)
I

I

I
\

Inertial

Reference

Direction

uator

X-44



Fi E. 17. Displacement in Longitude at Landing

Track

Swath

Inerti

R_ference

Direction

I

X-45




